@11101001
2018-02-21T06:10:52.000000Z
字数 2227
阅读 951
首先要了解prufer序列
对于每个prufer序列都对应唯一的一棵树,对于该规定了度数的点也就规定了该店在prufer序列中出现的次数,那么就是求prufer序列的方案数也就是可重复序列的全排列。
首先只考虑规定度数得点设其度数为d[i],有k个,那么他在prufer中出现的次数就是d[i]-1
设
/**************************************************************Problem: 1005为了不超时,用质数表来优化。Language: C++Result: AcceptedTime:640 msMemory:876 kb****************************************************************/#include<cstdio>#include<cstring>#include<algorithm>using namespace std;int prime[]={2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,577,587,593,599,601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,701,709,719,727,733,739,743,751,757,761,769,773,787,797,809,811,821,823,827,829,839,853,857,859,863,877,881,883,887,907,911,919,929,937,941,947,953,967,971,977,983,991,997};int n,d[1010],s[200],k=0,sum=0,base=10000;struct BigInt {int len,a[10007];BigInt() {len=1; memset(a,0,sizeof(a));a[0]=1;}int & operator[](int x) {return a[x];}void print() {printf("%d",a[len-1]);for(int i=len-2;i>=0;i--) printf("%04d",a[i]);puts("");}};BigInt operator*(BigInt x,int y) {for(int i=0;i<x.len;i++)x[i]*=y;for(int i=0;i<x.len;i++)x[i+1]+=x[i]/base,x[i]%=base;while(x[x.len])x[x.len]+=x[x.len-1]/base, x[x.len-1]%=base, x.len++;return x;}void mul(int x,int y){for(int j=0;j<168;j++){while(x%prime[j]==0) {x/=prime[j];s[j]+=y;}}}int main() {scanf("%d",&n);if(n==1) {int x;scanf("%d",&x);if(x<1) puts("1");else puts("0");return 0;}for(int i=1;i<=n;i++) {scanf("%d",&d[i]);if(d[i]==-1) k++;else sum+=d[i]-1;}if(sum>n-2) {puts("0"); return 0;}for(int i=0;i<sum;i++)mul(n-2-i,1);for(int i=1;i<=n;i++)for(int j=1;j<d[i];j++)mul(j,-1);mul(k,n-sum-2);BigInt ans;for(int i=0;i<200;i++)for(int j=0;j<s[i];j++)ans=ans*prime[i];ans.print();return 0;}