@DingCao-HJJ
2015-09-15T03:15:15.000000Z
字数 3885
阅读 1230
算法 排序参考资料:
冒泡排序_百度百科
冒泡排序可以说是最简单的排序算法。原理就是从数组的最后让最小的数依次排到数组的最前面,时间复杂度为
算法代码
// BubleSort: a most simple way to sort a series of numbers.// but not so efficient.// @Param numbers: the array pointer storing the numbers// @Param beginning, tail: show the range we need to sort.(begin <= i < end)void BubleSort(int *numbers, int beginning, int tail) {for (int i = beginning; i < tail; i++) {for (int j = tail - 1; j > i; j--) {if (numbers[j] < numbers[j - 1]) {int tmp = numbers[j - 1];numbers[j - 1] = numbers[j];numbers[j] = tmp;}}}}
参考资料:选择排序_百度百科

把数列无序区中最小的一个放到无序区的最前面,从而使无序区的元素逐渐变得有序。时间复杂度也是
算法代码:
// SelectionSort: a unstable sorting algorithm.// @Param numbers: the array pointer storing the numbers// @Param beginning, tail: show the range we need to sort.(beginning <= i < tail)void SelectionSort(int* numbers, int beginning, int tail) {for (int i = beginning; i < tail; i++) {// suppose the index of the number is i, and the left of i is sorted.// then find the mininum of the rest and exchange it with numbers[i].int min = i;for (int j = i + 1; j < tail; j++) {if (numbers[j] < numbers[min]) min = j;}// exchange. when a smaller number than nubmers[i] is found, exchange them.if (i != min) {int temp = numbers[min];numbers[min] = numbers[i];numbers[i] = temp;}}}
参考资料: 插入败絮_百度百科
将数组中无序的元素插入到有序的元素队列中已完成排序。
算法代码:
// InsertionSort: a stable sorting algorithm that insert a number to the sorted// sequence till all numbers are sorted.// @Param numbers: the array pointer storing the numbers// @Param beginning, tail: show the range we need to sort.(beginning <= i < tail)void InsertionSort(int* numbers, int beginning, int tail) {for (int i = beginning, i < tail; i++) {// insert numbers[j] to certain positionint temp = numbers[i+1];for (int j = i+1; j > beginning; j--) {if (numbers[temp] < numbers[j-1]) {// if j is not the position, move temp to the index before j// and store the data.numbers[j] = numbers[j-1];} else {numbers[j] = temp; // if j is the position, insert itbreak; // and go to insert the next number.}}}}
参考资料:快速排序_百度百科
通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。
算法代码:
// QuickSort.Just to put the numbers smaller than x on the left// and the bigger on the right.// @Param numbers: the array pointer storing the numbers// @Param beginning, tail: show the range we need to sort.(beginning <= i < tail)void QuickSort(int *numbers, int head, int tail) {int t, i = head, j = tail, x = numbers[(i + j) / 2];do {while (x > numbers[i]) i++;while (x < numbers[j]) j--;if (i <= j) {temp = numbers[i];numbers[i] = numbers[j];numbers[j] = temp;i++; j--;}} while (i <= j);if (i < tail) quick_sort(numbers, i, tail); // sort the leftif (head < j) quick_sort(numbers, head, j); // sort the right}
堆排序是和快排、归并排序一样常见的复杂度为
那么,要进行堆排序,首先要把n个数据进行最大堆化(也就是把整个数据整理成一个最大堆)这样子首元素就是数组最大的元素了。把它和最后的元素进行交换,那么就可以得到最后的元素是最大的。如此类推,由于最后一个元素已经是有序的,对前面n-1个元素再进行堆调整。
inline void sort_branch(int nums[], int start, int end) {// sorts a branch making the maxinum in the brach to the root// @Param |nums|: the data array regarded as a heap// @|start|: the beginning index of |nums|// @|end|: the non-include end index of |nums|int larger_child; // find the larger child and record the node// from node(|root|)// each time we search the larger child for the next step// loop until we have moved all larger child nodes to the upper nodefor (int root = start;2 * root + 1 < end;root = larger_child) {larger_child = 2 * root + 1; // first dim larger_child as the left_childif (larger_child < end - 1 && nums[larger_child + 1] > nums[larger_child])larger_child++;if (nums[root] < nums[larger_child])swap(nums[root], nums[larger_child]);elsebreak;}}inline void heap_sort(int nums[], int start, int end) {// sort with a maxinum heap.// @Param |nums|: the data array regarded as a heap// @|start|: the beginning index of |nums|// @|end|: the non-include end index of |nums|// build up a maxinum heap for the first timefor (int i = end / 2; i >= start; i--) sort_branch(nums, i, end);// Now, the max number of |nums| between |start| and |end|-1 is |nums[start]|// for we have built up a maxinum heap. Then swap it with the last number// so the last number will be the largest.// Then sort the branch from the root to find the next maxinum number and// do the same again. Loop until there is only an element left, which means// we have sorted all elementsfor (int j = end - 1; j > start; j--) {swap(nums[0], nums[j]);sort_branch(nums, start, j);}}