[关闭]
@RebornHuan 2017-05-25T05:42:54.000000Z 字数 48423 阅读 1546

api接口

接口说明
1.集群列表

  1. {
  2. "status": 0,
  3. "data": [
  4. {
  5. "entityStatus": "CONCERNING_HEALTH",
  6. "version": "CDH5",
  7. "displayName": "成都综合生产集群",
  8. "name": "cluster",
  9. "fullVersion": "5.7.1"
  10. },
  11. {
  12. "entityStatus": "GOOD_HEALTH",
  13. "version": "CDH5",
  14. "displayName": "成都公共服务集群",
  15. "name": "cluster2",
  16. "fullVersion": "5.7.1"
  17. },
  18. {
  19. "entityStatus": "GOOD_HEALTH",
  20. "version": "CDH5",
  21. "displayName": "成都准实时生产集群",
  22. "name": "cluster3",
  23. "fullVersion": "5.7.1"
  24. },
  25. {
  26. "entityStatus": "GOOD_HEALTH",
  27. "version": "CDH5",
  28. "displayName": "成都实时计算生产集群",
  29. "name": "cluster4",
  30. "fullVersion": "5.7.1"
  31. }
  32. ]
  33. }

2.文件系统概况

  1. {
  2. "status": 0,
  3. "data": [
  4. {
  5. "value": "1.1PB",
  6. "name": "dfs_capacity",
  7. "unit": "PB"
  8. },
  9. {
  10. "value": "415.4TB",
  11. "name": "dfs_capacity_used",
  12. "unit": "TB"
  13. },
  14. {
  15. "value": "54.4TB",
  16. "name": "dfs_capacity_used_non_hdfs",
  17. "unit": "TB"
  18. }
  19. ]
  20. }

2.HDFS top user

  1. {
  2. "status": 0,
  3. "data": [
  4. {
  5. "rawSize": 1728087258,
  6. "numFiles": 709,
  7. "user": "oozie",
  8. "size": 576029086
  9. },
  10. {
  11. "rawSize": 32624520,
  12. "numFiles": 232,
  13. "user": "hive",
  14. "size": 10874840
  15. },
  16. {
  17. "rawSize": 0,
  18. "numFiles": 1,
  19. "user": "ganjianling",
  20. "size": 0
  21. },
  22. {
  23. "rawSize": 0,
  24. "numFiles": 2737,
  25. "user": "hue",
  26. "size": 0
  27. },
  28. {
  29. "rawSize": 314580525,
  30. "numFiles": 19,
  31. "user": "hdfs",
  32. "size": 104860175
  33. },
  34. {
  35. "rawSize": 0,
  36. "numFiles": 1,
  37. "user": "solr",
  38. "size": 0
  39. },
  40. {
  41. "rawSize": 0,
  42. "numFiles": 1,
  43. "user": "griffin",
  44. "size": 0
  45. },
  46. {
  47. "rawSize": 0,
  48. "numFiles": 3,
  49. "user": "mapred",
  50. "size": 0
  51. },
  52. {
  53. "rawSize": 42018,
  54. "numFiles": 108,
  55. "user": "hbase",
  56. "size": 14006
  57. },
  58. {
  59. "rawSize": 0,
  60. "numFiles": 3,
  61. "user": "yarn",
  62. "size": 0
  63. },
  64. {
  65. "rawSize": 81882168,
  66. "numFiles": 1216,
  67. "user": "etl_user",
  68. "size": 27294056
  69. },
  70. {
  71. "rawSize": 1728087258,
  72. "numFiles": 709,
  73. "user": "oozie",
  74. "size": 576029086
  75. },
  76. {
  77. "rawSize": 32624520,
  78. "numFiles": 234,
  79. "user": "hive",
  80. "size": 10874840
  81. },
  82. {
  83. "rawSize": 0,
  84. "numFiles": 1,
  85. "user": "ganjianling",
  86. "size": 0
  87. },
  88. {
  89. "rawSize": 0,
  90. "numFiles": 2233,
  91. "user": "hue",
  92. "size": 0
  93. },
  94. {
  95. "rawSize": 314580525,
  96. "numFiles": 19,
  97. "user": "hdfs",
  98. "size": 104860175
  99. },
  100. {
  101. "rawSize": 0,
  102. "numFiles": 1,
  103. "user": "solr",
  104. "size": 0
  105. },
  106. {
  107. "rawSize": 0,
  108. "numFiles": 1,
  109. "user": "griffin",
  110. "size": 0
  111. },
  112. {
  113. "rawSize": 0,
  114. "numFiles": 3,
  115. "user": "mapred",
  116. "size": 0
  117. },
  118. {
  119. "rawSize": 42018,
  120. "numFiles": 108,
  121. "user": "hbase",
  122. "size": 14006
  123. },
  124. {
  125. "rawSize": 0,
  126. "numFiles": 3,
  127. "user": "yarn",
  128. "size": 0
  129. },
  130. {
  131. "rawSize": 81903969,
  132. "numFiles": 1300,
  133. "user": "etl_user",
  134. "size": 27301323
  135. }
  136. ]
  137. }

2.impala top

  1. {
  2. "status": 0,
  3. "data": [
  4. {
  5. "category": "IMPALA_QUERY",
  6. "query_duration": "2.02h",
  7. "database": "ffan_dw",
  8. "service_name": "impala",
  9. "coordinator_host_id": "fd96a207-efac-4e93-9e9e-68f2f2bb86da",
  10. "executing": "false",
  11. "statement": "USE `ffan_dw`",
  12. "user": "hejunyi",
  13. "stats_missing": "false",
  14. "time": "2017-04-24T08:27:53Z",
  15. "entityName": "3d46fe73ae1ec6de:1899b7cc33a26b1"
  16. },
  17. {
  18. "category": "IMPALA_QUERY",
  19. "query_duration": "9m",
  20. "thread_cpu_time": "11347",
  21. "database": "ffan_dw",
  22. "service_name": "impala",
  23. "coordinator_host_id": "1483cda3-05fa-45cc-824c-4dc307b5ce96",
  24. "executing": "false",
  25. "statement": "select \ncount(1)\nfrom\n ffan_dw.t_wd_bankacct",
  26. "user": "ffan_oper_user",
  27. "stats_missing": "false",
  28. "time": "2017-04-24T08:48:16Z",
  29. "entityName": "38406324fcdf460c:86dc2d87768702b4",
  30. "pool": "default-pool"
  31. },
  32. {
  33. "category": "IMPALA_QUERY",
  34. "query_duration": "1.91h",
  35. "thread_cpu_time": "35182",
  36. "database": "app_ffan",
  37. "service_name": "impala",
  38. "coordinator_host_id": "fd96a207-efac-4e93-9e9e-68f2f2bb86da",
  39. "executing": "false",
  40. "statement": "select count(t.id) 娲昏穬浼氬憳\nfrom (\nselect t2.id,count(distinct t1.dt) as date_cnt\nfrom ( select t.*, cast(t.uid as int)as id from sandbox_gip.ffan_zs_user_use_detail t ) t1\njoin staging_ff_csp.user t2\non t1.id=t2.id\nwhere (t1.uid<>'' or t1.user_id<>'')\nand t2.is_active=1\nand to_date(t1.dt)>='2017-01-01'\nand to_date(t1.dt)<'2017-04-24'\ngroup by t2.id\nhaving count(distinct t1.dt)>=2 ) t",
  41. "user": "gip_tableau_user",
  42. "stats_missing": "true",
  43. "time": "2017-04-24T08:27:53Z",
  44. "entityName": "e940007581ea8ff3:5576e9a2519aca95",
  45. "pool": "default-pool"
  46. },
  47. {
  48. "category": "IMPALA_QUERY",
  49. "query_duration": "1.07h",
  50. "thread_cpu_time": "1649",
  51. "database": "dwd_ffan",
  52. "service_name": "impala",
  53. "coordinator_host_id": "fd96a207-efac-4e93-9e9e-68f2f2bb86da",
  54. "executing": "false",
  55. "statement": "select * from basedata_category",
  56. "user": "hejunyi",
  57. "stats_missing": "true",
  58. "time": "2017-04-24T08:27:53Z",
  59. "entityName": "23401688e9d8f387:6a9a5556374506a0",
  60. "pool": "default-pool"
  61. },
  62. {
  63. "category": "IMPALA_QUERY",
  64. "query_duration": "51m",
  65. "database": "default",
  66. "service_name": "impala",
  67. "coordinator_host_id": "75ed8a23-7ba2-4730-b0b2-99929ede0d0a",
  68. "executing": "true",
  69. "statement": "GET_TABLE_TYPES",
  70. "user": "majiaojiao3",
  71. "stats_missing": "false",
  72. "time": "2017-04-24T09:09:25Z",
  73. "entityName": "414639ed1ecb5d38:282420735e090e87"
  74. },
  75. {
  76. "category": "IMPALA_QUERY",
  77. "query_duration": "1.38h",
  78. "thread_cpu_time": "1695",
  79. "database": "ffan_dw",
  80. "service_name": "impala",
  81. "coordinator_host_id": "fd96a207-efac-4e93-9e9e-68f2f2bb86da",
  82. "executing": "false",
  83. "statement": "select \n*\nfrom\n ffan_dw.trpt_bankacct\norder by \ndata_dt desc",
  84. "user": "ffan_oper_user",
  85. "stats_missing": "true",
  86. "time": "2017-04-24T08:27:53Z",
  87. "entityName": "1e462d219ff30aa0:63c6769acc5b9d84",
  88. "pool": "default-pool"
  89. },
  90. {
  91. "category": "IMPALA_QUERY",
  92. "query_duration": "10m",
  93. "database": "default",
  94. "service_name": "impala",
  95. "coordinator_host_id": "e9be89ff-258a-414c-aaa7-21cb23f08b3c",
  96. "executing": "false",
  97. "statement": "GET_TABLE_TYPES",
  98. "user": "etl_user",
  99. "stats_missing": "false",
  100. "time": "2017-04-24T08:43:15Z",
  101. "entityName": "a8454cc71e2c419b:cb869f37aa6229f"
  102. },
  103. {
  104. "category": "IMPALA_QUERY",
  105. "query_duration": "11m",
  106. "thread_cpu_time": "7728",
  107. "database": "ffan_dw",
  108. "service_name": "impala",
  109. "coordinator_host_id": "1483cda3-05fa-45cc-824c-4dc307b5ce96",
  110. "executing": "false",
  111. "statement": "(select jy1.*,hx1.* from\n(select substr(trans_time,12,2) as per_hour_1,store_id,count(order_no) from dws_ffan.s06_ffan_trade_order_sum where dt='20170420' and trade_type_name='娑堣垂' and product_id='' group by store_id,substr(trans_time,12,2)) jy1 \nleft join \n(select substr(use_time,12,2) as per_hour_2,use_store,count(order_no) from dwd_ffan.coupon_ec where dt='20170420' and status=4 and product_no='' group by substr(use_time,12,2),use_store) hx1 \non jy1.per_hour_1=hx1.per_hour_2 and jy1.store_id=hx1.use_store\n) \nunion\n(select jy2.*,hx2.* from\n(select substr(trans_time,12,2) as 'per_hour_1',store_id,count(order_no) from dws_ffan.s06_ffan_trade_order_sum where dt='20170420' and trade_type_name='娑堣垂' and product_id='' group by store_id,substr(trans_time,12,2)) jy2 \nright join \n(select substr(use_time,12,2) as 'per_hour_2',use_store,count(order_no) from dwd_ffan.coupon_ec where dt='20170420' and status=4 and product_no='' group by substr(use_time,12,2),use_store) hx2 \non jy2.per_hour_1=hx2.per_hour_2 and jy2.store_id=hx2.use_store\n)",
  112. "user": "ffan_riskaudit_user",
  113. "stats_missing": "true",
  114. "time": "2017-04-24T08:36:12Z",
  115. "entityName": "fd493687f11123b7:cd55d291a34d92b2",
  116. "pool": "default-pool"
  117. },
  118. {
  119. "category": "IMPALA_QUERY",
  120. "query_duration": "54m",
  121. "database": "default",
  122. "service_name": "impala",
  123. "coordinator_host_id": "1483cda3-05fa-45cc-824c-4dc307b5ce96",
  124. "executing": "true",
  125. "statement": "GET_SCHEMAS",
  126. "user": "ffan_oper_user",
  127. "stats_missing": "false",
  128. "time": "2017-04-24T09:09:25Z",
  129. "entityName": "9446fdb82b6a0a51:821c9a3d27866da1"
  130. },
  131. {
  132. "category": "IMPALA_QUERY",
  133. "query_duration": "2.25h",
  134. "thread_cpu_time": "184933",
  135. "database": "ffan_dw",
  136. "service_name": "impala",
  137. "coordinator_host_id": "fd96a207-efac-4e93-9e9e-68f2f2bb86da",
  138. "executing": "false",
  139. "statement": "select regexp_replace(regexp_replace(a1.store_name,'\\\\(.*\\\\)',''),'\\锛�.*\\锛�','') as store_brief,\n min(substr(regexp_replace(regexp_replace(a1.store_name,'\\\\(.*\\\\)',''),'\\锛�.*\\锛�',''),1,6))as store_init\n from dwd_ffan.basedata_store a1,ffan_dw.bi_new_ffan_trade_order_info_with_oa_and_cut a2\n where cast(a1.store_id as string)=a2.combine_store_id and a2.city_name='涓婃捣甯�' and a2.business_type_name='椁愰ギ'\ngroup by store_brief",
  140. "user": "hejunyi",
  141. "stats_missing": "true",
  142. "time": "2017-04-24T08:27:52Z",
  143. "entityName": "8843e04bca02b01e:c3d24bc13a6a9781",
  144. "pool": "default-pool"
  145. },
  146. {
  147. "category": "IMPALA_QUERY",
  148. "query_duration": "1.61h",
  149. "thread_cpu_time": "53038",
  150. "database": "ffan_dw",
  151. "service_name": "impala",
  152. "coordinator_host_id": "fd96a207-efac-4e93-9e9e-68f2f2bb86da",
  153. "executing": "false",
  154. "statement": "select isnull(sum(operate_cut_amount),0)+sum(use_discount)+sum(deduction_amt) from bi_new_ffan_trade_order_info_with_oa_and_cut\nwhere plaza_id='1100836'\nand dt>='20160101'\nand dt<='20170420'",
  155. "user": "ffan_riskaudit_user",
  156. "stats_missing": "true",
  157. "time": "2017-04-24T08:27:53Z",
  158. "entityName": "8b45538614e68698:40aef525d004f59f",
  159. "pool": "default-pool"
  160. },
  161. {
  162. "category": "IMPALA_QUERY",
  163. "query_duration": "5m",
  164. "thread_cpu_time": "47566",
  165. "database": "ffan_dw",
  166. "service_name": "impala",
  167. "coordinator_host_id": "1483cda3-05fa-45cc-824c-4dc307b5ce96",
  168. "executing": "false",
  169. "statement": "select hx.*,gz.* from \n(select use_store from dwd_ffan.coupon_ec where dt='20170421' and status=4) hx \nleft join\n(select storeid, count(distinct uid),case when risk_result_success like '%ZF-CF-couponCheck-differentLocationCity%' then '鏍搁攢鐜妭' end as'瑙﹀彂鐜妭' from risk_bigdata.prod_risk_log where\neventtime>='2017-04-21 00:00:00' and eventtime<='2017-04-24 00:00:00' and storeid !='~' and risk_result_success like '%ZF-CF-couponCheck-differentLocationCity%' group by storeid,substr(eventtime,1,10),case when risk_result_success like '%ZF-CF-couponCheck-differentLocationCity%' then '鏍搁攢鐜妭' end having count(distinct uid)>10) gz \non hx.use_store=gz.storeid",
  170. "user": "ffan_riskaudit_user",
  171. "stats_missing": "true",
  172. "time": "2017-04-24T08:50:09Z",
  173. "entityName": "4c4a93f73cde7509:1072d27373ca1faa",
  174. "pool": "default-pool"
  175. },
  176. {
  177. "category": "IMPALA_QUERY",
  178. "query_duration": "1.77h",
  179. "thread_cpu_time": "729",
  180. "database": "ffan_dw",
  181. "service_name": "impala",
  182. "coordinator_host_id": "fd96a207-efac-4e93-9e9e-68f2f2bb86da",
  183. "executing": "false",
  184. "statement": "select * from dim_event_level1",
  185. "user": "ffan_oper_user",
  186. "stats_missing": "true",
  187. "time": "2017-04-24T08:27:53Z",
  188. "entityName": "2b4c17cba509d9f7:62f271d6b506e896",
  189. "pool": "default-pool"
  190. },
  191. {
  192. "category": "IMPALA_QUERY",
  193. "query_duration": "2.21h",
  194. "database": "ffan_dw",
  195. "service_name": "impala",
  196. "coordinator_host_id": "fd96a207-efac-4e93-9e9e-68f2f2bb86da",
  197. "executing": "false",
  198. "statement": "create table fact_ffantong_event_log\n(\ndatekey string,\nhourkey string,\nevent_id string,\napp_type string,\napp_version string,\ndevice_id string\n)\npartitioned by (dt string) \nrow format delimited fields terminated by '\\t'\nstored as textfile",
  199. "user": "ffan_oper_user",
  200. "stats_missing": "false",
  201. "time": "2017-04-24T08:27:52Z",
  202. "entityName": "d428bc66bdad971:5ea6ab28345e597"
  203. },
  204. {
  205. "category": "IMPALA_QUERY",
  206. "query_duration": "35m",
  207. "thread_cpu_time": "57915",
  208. "database": "sub",
  209. "service_name": "impala",
  210. "coordinator_host_id": "fd96a207-efac-4e93-9e9e-68f2f2bb86da",
  211. "executing": "false",
  212. "statement": "select count(1) from staging_small_loan.acct_loan where to_date(regexp_replace(putoutdate, '/', '-')) < to_date('2017-04-22')",
  213. "user": "etl_user",
  214. "stats_missing": "true",
  215. "time": "2017-04-24T08:27:52Z",
  216. "entityName": "f444396f4d5780be:f14d770fd32db59a",
  217. "pool": "default-pool"
  218. },
  219. {
  220. "category": "IMPALA_QUERY",
  221. "query_duration": "7m",
  222. "thread_cpu_time": "6242",
  223. "database": "risk_bigdata",
  224. "service_name": "impala",
  225. "coordinator_host_id": "1483cda3-05fa-45cc-824c-4dc307b5ce96",
  226. "executing": "false",
  227. "statement": "(select jy1.*,hx1.* from\n(select substr(trans_time,12,2) as per_hour_1,store_id,count(order_no) from dws_ffan.s06_ffan_trade_order_sum where dt='20170420' and trade_type_name='娑堣垂' group by store_id,substr(trans_time,12,2)) jy1 \nleft join \n(select substr(use_time,12,2) as per_hour_2,use_store,count(order_no) from dwd_ffan.coupon_ec where dt='20170420' and status=4 and product_no='' group by substr(use_time,12,2),use_store) hx1 \non jy1.per_hour_1=hx1.per_hour_2 and jy1.store_id=hx1.use_store\n) \nunion\n(select jy2.*,hx2.* from\n(select substr(trans_time,12,2) as 'per_hour_1',store_id,count(order_no) from dws_ffan.s06_ffan_trade_order_sum where dt='20170420' and trade_type_name='娑堣垂' group by store_id,substr(trans_time,12,2)) jy2 \nright join \n(select substr(use_time,12,2) as 'per_hour_2',use_store,count(order_no) from dwd_ffan.coupon_ec where dt='20170420' and status=4 group by substr(use_time,12,2),use_store) hx2 \non jy2.per_hour_1=hx2.per_hour_2 and jy2.store_id=hx2.use_store\n)",
  228. "user": "ffan_riskaudit_user",
  229. "stats_missing": "true",
  230. "time": "2017-04-24T08:26:26Z",
  231. "entityName": "18430e1b1b2203e5:f9ea4fd4dce7ccbf",
  232. "pool": "default-pool"
  233. },
  234. {
  235. "category": "IMPALA_QUERY",
  236. "query_duration": "54m",
  237. "thread_cpu_time": "6050982",
  238. "database": "ffan_dw",
  239. "service_name": "impala",
  240. "coordinator_host_id": "1483cda3-05fa-45cc-824c-4dc307b5ce96",
  241. "executing": "true",
  242. "statement": "select a.dt,ceiling(geo_distance),datediff(logindate,mindate) as delta_date,count(distinct a.device_id)\nfrom\n(\nselect a.dt,concat_ws('-',substring(a.dt,1,4),substring(a.dt,5,2),substring(a.dt,7,2)) as mindate,a.device_id,min(geo_distance) as geo_distance from\n(select a.dt,datekey,device_id,geo_distance,row_number() over (partition by device_id order by event_time) rn\n from dws_ffan.app_event_log a\nwhere dt>='20170401'\nand datekey>='2017-04-01'\nand app_type='IOS'\nand device_id<>''\nand geo_position is not null\nand geo_position<>'') a\njoin\n(\nselect distinct dt,mindate,device_id from dim_app_alldevice where dt>='20170401'\n) b\non (a.device_id=b.device_id and a.dt=b.dt)\nwhere rn<=50\ngroup by dt,device_id) a\nleft outer join\n(\nselect distinct concat_ws('-',substring(dt,1,4),substring(dt,5,2),substring(dt,7,2)) as logindate,device_id from \ndws_ffan.app_event_log a\nwhere dt>='20170401'\nand app_type='IOS'\nand device_id<>''\n) b\non (a.device_id=b.device_id)\ngroup by a.dt,ceiling(geo_distance),datediff(logindate,mindate)\nhaving datediff(logindate,mindate) in (1,7)",
  243. "user": "ffan_oper_user",
  244. "stats_missing": "true",
  245. "time": "2017-04-24T09:09:25Z",
  246. "entityName": "5e46be18b11f4729:eada48da0ae588ba",
  247. "pool": "default-pool"
  248. },
  249. {
  250. "category": "IMPALA_QUERY",
  251. "query_duration": "17m",
  252. "thread_cpu_time": "735",
  253. "database": "ffan_dw",
  254. "service_name": "impala",
  255. "coordinator_host_id": "1483cda3-05fa-45cc-824c-4dc307b5ce96",
  256. "executing": "true",
  257. "statement": "select \n*\nfrom\n ffan_dw.t_cust_base_info",
  258. "user": "ffan_oper_user",
  259. "stats_missing": "true",
  260. "time": "2017-04-24T09:09:25Z",
  261. "entityName": "fd40208f080d9146:592906460ea6bbd",
  262. "pool": "default-pool"
  263. },
  264. {
  265. "category": "IMPALA_QUERY",
  266. "query_duration": "2.73h",
  267. "thread_cpu_time": "85549",
  268. "database": "risk_bigdata",
  269. "service_name": "impala",
  270. "coordinator_host_id": "fd96a207-efac-4e93-9e9e-68f2f2bb86da",
  271. "executing": "false",
  272. "statement": "select rule_route,count(uid) from prod_risk_log \nwhere (ip='' or substr(ip,1,6)='10.192')\nand rule_route not like '%result%'\ngroup by rule_route",
  273. "user": "ffan_riskaudit_user",
  274. "stats_missing": "true",
  275. "time": "2017-04-24T08:27:52Z",
  276. "entityName": "b742f2956d95fbfb:daf75b6818b85f97",
  277. "pool": "default-pool"
  278. },
  279. {
  280. "category": "IMPALA_QUERY",
  281. "query_duration": "39m",
  282. "thread_cpu_time": "2646",
  283. "database": "risk_bigdata",
  284. "service_name": "impala",
  285. "coordinator_host_id": "1483cda3-05fa-45cc-824c-4dc307b5ce96",
  286. "executing": "true",
  287. "statement": "select jy1.*,hx1.* from\n(select substr(trans_time,12,2) as per_hour_1,store_id,count(order_no) from dws_ffan.s06_ffan_trade_order_sum where dt='20170420' and trade_type_name='娑堣垂' group by store_id,substr(trans_time,12,2)) jy1 \nleft join \n(select substr(use_time,12,2) as per_hour_2,use_store,count(order_no) from dwd_ffan.coupon_ec where dt='20170420' and status=4 and product_no='' group by substr(use_time,12,2),use_store) hx1 \non jy1.per_hour_1=hx1.per_hour_2 and jy1.store_id=hx1.use_store",
  288. "user": "ffan_riskaudit_user",
  289. "stats_missing": "true",
  290. "time": "2017-04-24T09:09:25Z",
  291. "entityName": "1a4bbc87beefb3a2:c8ac83c612fa508e",
  292. "pool": "default-pool"
  293. },
  294. {
  295. "category": "IMPALA_QUERY",
  296. "query_duration": "32m",
  297. "database": "sub",
  298. "service_name": "impala",
  299. "coordinator_host_id": "1483cda3-05fa-45cc-824c-4dc307b5ce96",
  300. "executing": "true",
  301. "statement": "invalidate metadata app_ffan.a06_ffan_business_department",
  302. "user": "etl_user",
  303. "stats_missing": "false",
  304. "time": "2017-04-24T09:09:25Z",
  305. "entityName": "7b41445636be9bbf:de39f68538cc23a5"
  306. },
  307. {
  308. "category": "IMPALA_QUERY",
  309. "query_duration": "53m",
  310. "thread_cpu_time": "1039",
  311. "database": "dw_plaza",
  312. "service_name": "impala",
  313. "coordinator_host_id": "fd96a207-efac-4e93-9e9e-68f2f2bb86da",
  314. "executing": "false",
  315. "statement": "select * from dimstore limit 10",
  316. "user": "analysis_app_user",
  317. "stats_missing": "true",
  318. "time": "2017-04-24T08:27:53Z",
  319. "entityName": "1c425aa5e1107492:89ac073f289ace8a",
  320. "pool": "default-pool"
  321. },
  322. {
  323. "category": "IMPALA_QUERY",
  324. "query_duration": "37m",
  325. "thread_cpu_time": "5269743",
  326. "database": "ffan_dw",
  327. "service_name": "impala",
  328. "coordinator_host_id": "fd96a207-efac-4e93-9e9e-68f2f2bb86da",
  329. "executing": "false",
  330. "statement": "select a.dt,datediff(datekey,mindate),ceiling(geo_distance),count(distinct a.device_id)\nfrom\n(\nselect a.dt,datekey,mindate,a.device_id,min(geo_distance) as geo_distance from\n(select a.dt,datekey,device_id,geo_distance,row_number() over (partition by device_id order by event_time) rn\n from dws_ffan.app_event_log a\nwhere dt>='20170401'\nand datekey>='2017-04-01'\nand app_type='IOS'\nand device_id<>''\nand geo_position is not null\nand geo_position<>'') a\nleft outer join\n(\nselect distinct dt,mindate,device_id from dim_app_alldevice where dt>='20170401'\n) b\non (a.device_id=b.device_id)\nwhere rn<=50\ngroup by a.dt,datekey,mindate,device_id) a\ngroup by a.dt,datediff(datekey,mindate),ceiling(geo_distance)\nhaving datediff(datekey,mindate)>=0",
  331. "user": "ffan_oper_user",
  332. "stats_missing": "true",
  333. "time": "2017-04-24T08:10:37Z",
  334. "entityName": "5d48b4cb263a2000:d2c2c29b974bf1b3",
  335. "pool": "default-pool"
  336. },
  337. {
  338. "category": "IMPALA_QUERY",
  339. "query_duration": "36m",
  340. "database": "default",
  341. "service_name": "impala",
  342. "coordinator_host_id": "e9be89ff-258a-414c-aaa7-21cb23f08b3c",
  343. "executing": "false",
  344. "statement": "GET_TABLE_TYPES",
  345. "user": "majiaojiao3",
  346. "stats_missing": "false",
  347. "time": "2017-04-24T08:09:59Z",
  348. "entityName": "724a6221f823ee5d:5b45c12fa51f87b1"
  349. },
  350. {
  351. "category": "IMPALA_QUERY",
  352. "query_duration": "51m",
  353. "thread_cpu_time": "26560141",
  354. "database": "ffan_dw",
  355. "service_name": "impala",
  356. "coordinator_host_id": "fd96a207-efac-4e93-9e9e-68f2f2bb86da",
  357. "executing": "false",
  358. "statement": "select\ncount(distinct t1.m_puid) as event_puid_cnts,\ncount(distinct t1.a_puid) as bk_puid_cnts\nfrom \n(\nselect\nm.puid as m_puid,\na.puid as a_puid\nfrom dws_ffan.app_event_log b \nleft join dws_ffan.s06_ffan_member_stat_d_sum m\non b.user_id = m.member_id\nleft join ffan_dw.bi_tied_trade_belong a\non a.puid = b.puid\nwhere b.dt>='2017-01-03' and b.mem_mobile like '%1%' ) t1",
  359. "user": "ffan_oper_user",
  360. "stats_missing": "true",
  361. "time": "2017-04-24T08:27:53Z",
  362. "entityName": "d242401fc1b2a02f:5ef8faa01a7788c",
  363. "pool": "default-pool"
  364. },
  365. {
  366. "category": "IMPALA_QUERY",
  367. "query_duration": "56m",
  368. "thread_cpu_time": "5515535",
  369. "database": "ffan_dw",
  370. "service_name": "impala",
  371. "coordinator_host_id": "fd96a207-efac-4e93-9e9e-68f2f2bb86da",
  372. "executing": "false",
  373. "statement": "select a.dt,datediff(datekey,mindate),ceiling(geo_distance),count(distinct a.device_id)\nfrom\n(\nselect a.dt,datekey,mindate,a.device_id,min(geo_distance) as geo_distance from\n(select a.dt,datekey,device_id,geo_distance,row_number() over (partition by device_id order by event_time) rn\n from dws_ffan.app_event_log a\nwhere dt>='20170401'\nand datekey>='2017-04-01'\nand app_type='IOS'\nand device_id<>''\nand geo_position is not null\nand geo_position<>'') a\nleft outer join\n(\nselect distinct dt,mindate,device_id from dim_app_alldevice where dt>='20170401'\n) b\non (a.device_id=b.device_id)\nwhere rn<=50\ngroup by a.dt,datekey,mindate,device_id) a\ngroup by a.dt,datediff(datekey,mindate),ceiling(geo_distance)\nhaving datediff(datekey,mindate)>=0",
  374. "user": "ffan_oper_user",
  375. "stats_missing": "true",
  376. "time": "2017-04-24T08:27:53Z",
  377. "entityName": "3f40962029e5bc15:89b10ea0c2351c85",
  378. "pool": "default-pool"
  379. }
  380. ]
  381. }

2.hive top

  1. {
  2. "status": 0,
  3. "data": [
  4. {
  5. "category": "YARN_APPLICATION",
  6. "name": "select a.dt,ceiling(geo_distance),da...(1,7)(Stage-7)",
  7. "application_duration": "1m",
  8. "entityName": "job_1492514699318_25500",
  9. "time": "2017-04-24T08:15:26Z",
  10. "user": "ffan_oper_user",
  11. "service_name": "yarn",
  12. "cpu_milliseconds": "18280090",
  13. "pool": "root.ffan_oper_user"
  14. },
  15. {
  16. "category": "YARN_APPLICATION",
  17. "name": "insert overwrite table s06_ffan_trade_o...dt(Stage-2)",
  18. "application_duration": "4m",
  19. "entityName": "job_1492514699318_24877",
  20. "time": "2017-04-24T00:44:33Z",
  21. "user": "etl_user",
  22. "service_name": "yarn",
  23. "cpu_milliseconds": "15114290",
  24. "pool": "root.etl_user"
  25. },
  26. {
  27. "category": "YARN_APPLICATION",
  28. "name": "create table fsx_ffan_daily_report_year_...t(Stage-2)",
  29. "application_duration": "2m",
  30. "entityName": "job_1492514699318_25124",
  31. "time": "2017-04-24T02:47:07Z",
  32. "user": "ffan_oper_user",
  33. "service_name": "yarn",
  34. "cpu_milliseconds": "872740",
  35. "pool": "root.ffan_oper_user"
  36. },
  37. {
  38. "category": "YARN_APPLICATION",
  39. "name": "SELECT count(distinct b.user_id)\nfrom...null(Stage-1)",
  40. "application_duration": "30m",
  41. "entityName": "job_1492514699318_25401",
  42. "time": "2017-04-24T04:33:24Z",
  43. "user": "liuxun14",
  44. "service_name": "yarn",
  45. "cpu_milliseconds": "258783880",
  46. "pool": "root.liuxun14"
  47. },
  48. {
  49. "category": "YARN_APPLICATION",
  50. "name": "insert overwrite tabl...=t1.combine_store_id(Stage-20)",
  51. "application_duration": "1m",
  52. "entityName": "job_1492514699318_25071",
  53. "time": "2017-04-24T02:40:06Z",
  54. "user": "ffan_oper_user",
  55. "service_name": "yarn",
  56. "cpu_milliseconds": "2130740",
  57. "pool": "root.ffan_oper_user"
  58. },
  59. {
  60. "category": "YARN_APPLICATION",
  61. "name": "select case when sysfrom = '99bill...sysfrom(Stage-1)",
  62. "application_duration": "4m",
  63. "entityName": "job_1492514699318_25118",
  64. "time": "2017-04-24T02:48:38Z",
  65. "user": "etl_user",
  66. "service_name": "yarn",
  67. "cpu_milliseconds": "6335040",
  68. "pool": "root.etl_user"
  69. },
  70. {
  71. "category": "YARN_APPLICATION",
  72. "name": "insert into table tmp...ll_loan.customer_tel(Stage-1)",
  73. "application_duration": "5m",
  74. "entityName": "job_1492514699318_25283",
  75. "time": "2017-04-24T03:12:32Z",
  76. "user": "etl_user",
  77. "service_name": "yarn",
  78. "cpu_milliseconds": "5312500",
  79. "pool": "root.etl_user"
  80. },
  81. {
  82. "category": "YARN_APPLICATION",
  83. "name": "create table fsx_ffan_daily_report_year_...t(Stage-1)",
  84. "application_duration": "2m",
  85. "entityName": "job_1492514699318_25079",
  86. "time": "2017-04-24T02:44:01Z",
  87. "user": "ffan_oper_user",
  88. "service_name": "yarn",
  89. "cpu_milliseconds": "3998570",
  90. "pool": "root.ffan_oper_user"
  91. },
  92. {
  93. "category": "YARN_APPLICATION",
  94. "name": "insert overwrite tabl...label=a14.date_label(Stage-24)",
  95. "application_duration": "1m",
  96. "entityName": "job_1492514699318_25422",
  97. "time": "2017-04-24T06:04:23Z",
  98. "user": "ffan_oper_user",
  99. "service_name": "yarn",
  100. "cpu_milliseconds": "7954830",
  101. "pool": "root.ffan_oper_user"
  102. },
  103. {
  104. "category": "YARN_APPLICATION",
  105. "name": "create table fsx_ffan_daily_report_y...rn2=1(Stage-1)",
  106. "application_duration": "4m",
  107. "entityName": "job_1492514699318_25206",
  108. "time": "2017-04-24T02:58:04Z",
  109. "user": "ffan_oper_user",
  110. "service_name": "yarn",
  111. "cpu_milliseconds": "121038970",
  112. "pool": "root.ffan_oper_user"
  113. },
  114. {
  115. "category": "YARN_APPLICATION",
  116. "name": "insert overwrite table s06_ffan_member_...dt(Stage-1)",
  117. "application_duration": "7m",
  118. "entityName": "job_1492514699318_24880",
  119. "time": "2017-04-24T01:01:33Z",
  120. "user": "etl_user",
  121. "service_name": "yarn",
  122. "cpu_milliseconds": "29452220",
  123. "pool": "root.etl_user"
  124. },
  125. {
  126. "category": "YARN_APPLICATION",
  127. "name": "insert overwrite table s06_ffan_member_...dt(Stage-2)",
  128. "application_duration": "18m",
  129. "entityName": "job_1492514699318_24882",
  130. "time": "2017-04-24T01:20:24Z",
  131. "user": "etl_user",
  132. "service_name": "yarn",
  133. "cpu_milliseconds": "22551970",
  134. "pool": "root.etl_user"
  135. },
  136. {
  137. "category": "YARN_APPLICATION",
  138. "name": "create table fsx_ffan_daily_report_y...rn2=1(Stage-2)",
  139. "application_duration": "4m",
  140. "entityName": "job_1492514699318_25224",
  141. "time": "2017-04-24T03:03:13Z",
  142. "user": "ffan_oper_user",
  143. "service_name": "yarn",
  144. "cpu_milliseconds": "43343410",
  145. "pool": "root.ffan_oper_user"
  146. },
  147. {
  148. "category": "YARN_APPLICATION",
  149. "name": "insert overwrite tabl...label=a14.date_label(Stage-7)",
  150. "application_duration": "1m",
  151. "entityName": "job_1492514699318_25092",
  152. "time": "2017-04-24T02:43:53Z",
  153. "user": "ffan_oper_user",
  154. "service_name": "yarn",
  155. "cpu_milliseconds": "13909480",
  156. "pool": "root.ffan_oper_user"
  157. },
  158. {
  159. "category": "YARN_APPLICATION",
  160. "name": "create table fsx_ffan...label=a14.date_label(Stage-14)",
  161. "application_duration": "1m",
  162. "entityName": "job_1492514699318_25159",
  163. "time": "2017-04-24T02:49:40Z",
  164. "user": "ffan_oper_user",
  165. "service_name": "yarn",
  166. "cpu_milliseconds": "9069810",
  167. "pool": "root.ffan_oper_user"
  168. },
  169. {
  170. "category": "YARN_APPLICATION",
  171. "name": "insert overwrite tabl...ll_c.cardextent_copy(Stage-1)",
  172. "application_duration": "2m",
  173. "entityName": "job_1492514699318_25501",
  174. "time": "2017-04-24T08:16:42Z",
  175. "user": "etl_user",
  176. "service_name": "yarn",
  177. "cpu_milliseconds": "1518070",
  178. "pool": "root.etl_user"
  179. },
  180. {
  181. "category": "YARN_APPLICATION",
  182. "name": "insert overwrite tabl..._edw.mobile_loc_copy(Stage-1)",
  183. "application_duration": "2m",
  184. "entityName": "job_1492514699318_25394",
  185. "time": "2017-04-24T03:58:18Z",
  186. "user": "etl_user",
  187. "service_name": "yarn",
  188. "cpu_milliseconds": "313330",
  189. "pool": "root.etl_user"
  190. },
  191. {
  192. "category": "YARN_APPLICATION",
  193. "name": "insert overwrite table d_membe...statis_date(Stage-2)",
  194. "application_duration": "3m",
  195. "entityName": "job_1492514699318_25273",
  196. "time": "2017-04-24T03:08:46Z",
  197. "user": "etl_user",
  198. "service_name": "yarn",
  199. "cpu_milliseconds": "7937500",
  200. "pool": "root.etl_user"
  201. },
  202. {
  203. "category": "YARN_APPLICATION",
  204. "name": "SELECT geo_plaza_id, geo_pl...geo_plaza_name(Stage-1)",
  205. "application_duration": "29m",
  206. "entityName": "job_1492514699318_25411",
  207. "time": "2017-04-24T06:22:33Z",
  208. "user": "liuxun14",
  209. "service_name": "yarn",
  210. "cpu_milliseconds": "247210340",
  211. "pool": "root.liuxun14"
  212. },
  213. {
  214. "category": "YARN_APPLICATION",
  215. "name": "insert overwrite tabl...label=a14.date_label(Stage-24)",
  216. "application_duration": "2m",
  217. "entityName": "job_1492514699318_25100",
  218. "time": "2017-04-24T02:44:26Z",
  219. "user": "ffan_oper_user",
  220. "service_name": "yarn",
  221. "cpu_milliseconds": "9189170",
  222. "pool": "root.ffan_oper_user"
  223. },
  224. {
  225. "category": "YARN_APPLICATION",
  226. "name": "select a.dt,ceiling(geo_distance),da...(1,7)(Stage-1)",
  227. "application_duration": "2m",
  228. "entityName": "job_1492514699318_25499",
  229. "time": "2017-04-24T08:15:42Z",
  230. "user": "ffan_oper_user",
  231. "service_name": "yarn",
  232. "cpu_milliseconds": "27830390",
  233. "pool": "root.ffan_oper_user"
  234. },
  235. {
  236. "category": "YARN_APPLICATION",
  237. "name": "insert overwrite tabl...serialno=t2.serialno(Stage-1)",
  238. "application_duration": "1m",
  239. "entityName": "job_1492514699318_25412",
  240. "time": "2017-04-24T05:55:26Z",
  241. "user": "etl_user",
  242. "service_name": "yarn",
  243. "cpu_milliseconds": "534560",
  244. "pool": "root.etl_user"
  245. },
  246. {
  247. "category": "YARN_APPLICATION",
  248. "name": "insert overwrite table s06_ffan_trade_o...dt(Stage-1)",
  249. "application_duration": "4m",
  250. "entityName": "job_1492514699318_24874",
  251. "time": "2017-04-24T00:39:40Z",
  252. "user": "etl_user",
  253. "service_name": "yarn",
  254. "cpu_milliseconds": "21515950",
  255. "pool": "root.etl_user"
  256. },
  257. {
  258. "category": "YARN_APPLICATION",
  259. "name": "select count(distinct..._trade_order_product(Stage-1)",
  260. "application_duration": "3m",
  261. "entityName": "job_1492514699318_24904",
  262. "time": "2017-04-24T01:57:09Z",
  263. "user": "analysis_app_user",
  264. "service_name": "yarn",
  265. "cpu_milliseconds": "1326010",
  266. "pool": "root.analysis_app_user"
  267. },
  268. {
  269. "category": "YARN_APPLICATION",
  270. "name": "create table fsx_ffan_daily_r...device_id\n)t(Stage-1)",
  271. "application_duration": "2m",
  272. "entityName": "job_1492514699318_25181",
  273. "time": "2017-04-24T02:53:16Z",
  274. "user": "ffan_oper_user",
  275. "service_name": "yarn",
  276. "cpu_milliseconds": "65326160",
  277. "pool": "root.ffan_oper_user"
  278. },
  279. {
  280. "category": "YARN_APPLICATION",
  281. "name": "SELECT plaza_id, plaza_name, mem_reg_c...sex(Stage-1)",
  282. "application_duration": "36m",
  283. "entityName": "job_1492514699318_24902",
  284. "time": "2017-04-24T02:28:46Z",
  285. "user": "liuxun14",
  286. "service_name": "yarn",
  287. "cpu_milliseconds": "268550370",
  288. "pool": "root.liuxun14"
  289. },
  290. {
  291. "category": "YARN_APPLICATION",
  292. "name": "insert overwrite table d_membe...statis_date(Stage-1)",
  293. "application_duration": "3m",
  294. "entityName": "job_1492514699318_25246",
  295. "time": "2017-04-24T03:04:47Z",
  296. "user": "etl_user",
  297. "service_name": "yarn",
  298. "cpu_milliseconds": "11929530",
  299. "pool": "root.etl_user"
  300. },
  301. {
  302. "category": "YARN_APPLICATION",
  303. "name": "select 's03' as biz_id, count(d...'20170424'(Stage-1)",
  304. "application_duration": "4m",
  305. "entityName": "job_1492514699318_24919",
  306. "time": "2017-04-24T02:16:32Z",
  307. "user": "etl_user",
  308. "service_name": "yarn",
  309. "cpu_milliseconds": "11812110",
  310. "pool": "root.etl_user"
  311. }
  312. ]
  313. }

2.hdfs 周增长 月增长 季增长统计

周增长 多一个 remaining 用于说明字段填充

  • col_1: 日期
  • col_2: 已用容量(T)
  • col_3: 上周容量(T)
  • col_4: 增量(T)
  • col_5: 周增长率(%)
  1. {
  2. "status": 0,
  3. "data": {
  4. "remaining": "262.0",
  5. "hdfs_used": [
  6. {
  7. "col_2": 417.3,
  8. "col_3": 409.5,
  9. "col_1": "2017-04-27",
  10. "col_4": "7.8",
  11. "col_5": "1.9"
  12. },
  13. {
  14. "col_2": 409.5,
  15. "col_3": 397.8,
  16. "col_1": "2017-04-20",
  17. "col_4": "11.7",
  18. "col_5": "2.9"
  19. },
  20. {
  21. "col_2": 397.8,
  22. "col_3": 392.0,
  23. "col_1": "2017-04-13",
  24. "col_4": "5.8",
  25. "col_5": "1.5"
  26. },
  27. {
  28. "col_2": 392.0,
  29. "col_3": 381.6,
  30. "col_1": "2017-04-06",
  31. "col_4": "10.4",
  32. "col_5": "2.7"
  33. }
  34. ]
  35. }
  36. }

月增长

  • col_1: 日期
  • col_2: 已用容量(T)
  • col_3: 上月容量(T)
  • col_4: 增量(T)
  • col_5: 月增长率(%)
  1. {
  2. "status": 0,
  3. "data": {
  4. "hdfs_used": [
  5. {
  6. "col_2": 417.3,
  7. "col_3": 381.6,
  8. "col_1": "2017-04",
  9. "col_4": "35.7",
  10. "col_5": "9.4"
  11. },
  12. {
  13. "col_2": 381.6,
  14. "col_3": 337.8,
  15. "col_1": "2017-03",
  16. "col_4": "43.8",
  17. "col_5": "13.0"
  18. },
  19. {
  20. "col_2": 337.8,
  21. "col_3": 298.1,
  22. "col_1": "2017-02",
  23. "col_4": "39.7",
  24. "col_5": "13.3"
  25. },
  26. {
  27. "col_2": 298.1,
  28. "col_3": 286.1,
  29. "col_1": "2017-01",
  30. "col_4": "12.0",
  31. "col_5": "4.2"
  32. }
  33. ]
  34. }
  35. }

季度增长

  • col_1: 日期
  • col_2: 已用容量(T)
  • col_3: 上季容量(T)
  • col_4: 增量(T)
  • col_5: 季度增长率(%)
  1. {
  2. "status": 0,
  3. "data": {
  4. "hdfs_used": [
  5. {
  6. "col_2": 381.6,
  7. "col_3": 286.1,
  8. "col_1": "2017-Q1",
  9. "col_4": "95.5",
  10. "col_5": "33.4"
  11. },
  12. {
  13. "col_2": 286.1,
  14. "col_3": 0.0,
  15. "col_1": "2016-Q4",
  16. "col_4": "286.1",
  17. "col_5": 0
  18. }
  19. ]
  20. }
  21. }

2.群集 cpu mem net统计

cpu

  1. {
  2. "status": 0,
  3. "data": {
  4. "cluster_used": [
  5. [
  6. [
  7. "2017-05-02T10:00:00Z",
  8. "2017-05-02T11:00:00Z",
  9. "2017-05-02T12:00:00Z",
  10. "2017-05-02T13:00:00Z",
  11. "2017-05-02T14:00:00Z",
  12. "2017-05-02T15:00:00Z",
  13. "2017-05-02T16:00:00Z",
  14. "2017-05-02T17:00:00Z",
  15. "2017-05-02T18:00:00Z",
  16. "2017-05-02T19:00:00Z",
  17. "2017-05-02T20:00:00Z",
  18. "2017-05-02T21:00:00Z",
  19. "2017-05-02T22:00:00Z",
  20. "2017-05-02T23:00:00Z",
  21. "2017-05-03T00:00:00Z",
  22. "2017-05-03T01:00:00Z",
  23. "2017-05-03T02:00:00Z",
  24. "2017-05-03T03:00:00Z",
  25. "2017-05-03T04:00:00Z",
  26. "2017-05-03T05:00:00Z",
  27. "2017-05-03T06:00:00Z",
  28. "2017-05-03T07:00:00Z",
  29. "2017-05-03T08:00:00Z",
  30. "2017-05-03T09:00:00Z",
  31. "2017-05-03T10:00:00Z"
  32. ],
  33. [
  34. 100.0,
  35. 99.9,
  36. 88.7,
  37. 31.8,
  38. 38.6,
  39. 93.5,
  40. 100.0,
  41. 100.0,
  42. 99.1,
  43. 100.0,
  44. 99.9,
  45. 40.5,
  46. 32.2,
  47. 26.3,
  48. 22.5,
  49. 30.6,
  50. 40.2,
  51. 39.0,
  52. 19.0,
  53. 21.7,
  54. 70.0,
  55. 30.9,
  56. 24.5,
  57. 99.2,
  58. 99.9
  59. ],
  60. "成都综合生产集群Max",
  61. "-",
  62. 1
  63. ],
  64. [
  65. [
  66. "2017-05-02T10:00:00Z",
  67. "2017-05-02T11:00:00Z",
  68. "2017-05-02T12:00:00Z",
  69. "2017-05-02T13:00:00Z",
  70. "2017-05-02T14:00:00Z",
  71. "2017-05-02T15:00:00Z",
  72. "2017-05-02T16:00:00Z",
  73. "2017-05-02T17:00:00Z",
  74. "2017-05-02T18:00:00Z",
  75. "2017-05-02T19:00:00Z",
  76. "2017-05-02T20:00:00Z",
  77. "2017-05-02T21:00:00Z",
  78. "2017-05-02T22:00:00Z",
  79. "2017-05-02T23:00:00Z",
  80. "2017-05-03T00:00:00Z",
  81. "2017-05-03T01:00:00Z",
  82. "2017-05-03T02:00:00Z",
  83. "2017-05-03T03:00:00Z",
  84. "2017-05-03T04:00:00Z",
  85. "2017-05-03T05:00:00Z",
  86. "2017-05-03T06:00:00Z",
  87. "2017-05-03T07:00:00Z",
  88. "2017-05-03T08:00:00Z",
  89. "2017-05-03T09:00:00Z",
  90. "2017-05-03T10:00:00Z"
  91. ],
  92. [
  93. 19.66199404761905,
  94. 23.848720238095236,
  95. 20.90066964285714,
  96. 4.085684523809523,
  97. 4.173392857142857,
  98. 20.628035714285712,
  99. 15.21059523809524,
  100. 15.10247023809524,
  101. 16.909732142857145,
  102. 11.952351190476188,
  103. 13.294464285714284,
  104. 4.693095238095238,
  105. 3.3662648809523805,
  106. 2.976502976190476,
  107. 2.886934523809524,
  108. 4.435892857142857,
  109. 4.857351190476191,
  110. 6.821636904761905,
  111. 2.487440476190476,
  112. 2.3911011904761903,
  113. 4.666726190476191,
  114. 2.7322321428571428,
  115. 3.144017857142857,
  116. 10.733005952380953,
  117. 22.21904761904762
  118. ],
  119. "成都综合生产集群Avg",
  120. "-",
  121. 1
  122. ],
  123. [
  124. [
  125. "2017-05-02T10:00:00Z",
  126. "2017-05-02T11:00:00Z",
  127. "2017-05-02T12:00:00Z",
  128. "2017-05-02T13:00:00Z",
  129. "2017-05-02T14:00:00Z",
  130. "2017-05-02T15:00:00Z",
  131. "2017-05-02T16:00:00Z",
  132. "2017-05-02T17:00:00Z",
  133. "2017-05-02T18:00:00Z",
  134. "2017-05-02T19:00:00Z",
  135. "2017-05-02T20:00:00Z",
  136. "2017-05-02T21:00:00Z",
  137. "2017-05-02T22:00:00Z",
  138. "2017-05-02T23:00:00Z",
  139. "2017-05-03T00:00:00Z",
  140. "2017-05-03T01:00:00Z",
  141. "2017-05-03T02:00:00Z",
  142. "2017-05-03T03:00:00Z",
  143. "2017-05-03T04:00:00Z",
  144. "2017-05-03T05:00:00Z",
  145. "2017-05-03T06:00:00Z",
  146. "2017-05-03T07:00:00Z",
  147. "2017-05-03T08:00:00Z",
  148. "2017-05-03T09:00:00Z",
  149. "2017-05-03T10:00:00Z"
  150. ],
  151. [
  152. 2.3,
  153. 2.3,
  154. 7.2,
  155. 2.5,
  156. 2.2,
  157. 2.2,
  158. 2.2,
  159. 2.3,
  160. 2.4,
  161. 2.4,
  162. 2.2,
  163. 2.0,
  164. 2.0,
  165. 2.0,
  166. 1.9,
  167. 2.2,
  168. 2.2,
  169. 2.3,
  170. 1.9,
  171. 1.9,
  172. 2.1,
  173. 1.9,
  174. 2.2,
  175. 2.2,
  176. 2.0
  177. ],
  178. "成都准实时生产集群Max",
  179. ":",
  180. 1
  181. ],
  182. [
  183. [
  184. "2017-05-02T10:00:00Z",
  185. "2017-05-02T11:00:00Z",
  186. "2017-05-02T12:00:00Z",
  187. "2017-05-02T13:00:00Z",
  188. "2017-05-02T14:00:00Z",
  189. "2017-05-02T15:00:00Z",
  190. "2017-05-02T16:00:00Z",
  191. "2017-05-02T17:00:00Z",
  192. "2017-05-02T18:00:00Z",
  193. "2017-05-02T19:00:00Z",
  194. "2017-05-02T20:00:00Z",
  195. "2017-05-02T21:00:00Z",
  196. "2017-05-02T22:00:00Z",
  197. "2017-05-02T23:00:00Z",
  198. "2017-05-03T00:00:00Z",
  199. "2017-05-03T01:00:00Z",
  200. "2017-05-03T02:00:00Z",
  201. "2017-05-03T03:00:00Z",
  202. "2017-05-03T04:00:00Z",
  203. "2017-05-03T05:00:00Z",
  204. "2017-05-03T06:00:00Z",
  205. "2017-05-03T07:00:00Z",
  206. "2017-05-03T08:00:00Z",
  207. "2017-05-03T09:00:00Z",
  208. "2017-05-03T10:00:00Z"
  209. ],
  210. [
  211. 0.9523333333333331,
  212. 0.9683333333333334,
  213. 1.0616666666666665,
  214. 0.9633333333333332,
  215. 0.9623333333333333,
  216. 0.9609999999999999,
  217. 0.963,
  218. 0.9560000000000001,
  219. 0.9619999999999999,
  220. 0.9606666666666667,
  221. 0.8856666666666665,
  222. 0.8736666666666667,
  223. 0.8549999999999998,
  224. 0.8306666666666667,
  225. 0.8280000000000001,
  226. 0.8829999999999998,
  227. 0.8223333333333332,
  228. 0.848,
  229. 0.8083333333333332,
  230. 0.8096666666666666,
  231. 0.8123333333333332,
  232. 0.816,
  233. 0.8366666666666667,
  234. 0.8539999999999998,
  235. 0.9186666666666664
  236. ],
  237. "成都准实时生产集群Avg",
  238. ":",
  239. 1
  240. ],
  241. [
  242. [
  243. "2017-05-02T10:00:00Z",
  244. "2017-05-02T11:00:00Z",
  245. "2017-05-02T12:00:00Z",
  246. "2017-05-02T13:00:00Z",
  247. "2017-05-02T14:00:00Z",
  248. "2017-05-02T15:00:00Z",
  249. "2017-05-02T16:00:00Z",
  250. "2017-05-02T17:00:00Z",
  251. "2017-05-02T18:00:00Z",
  252. "2017-05-02T19:00:00Z",
  253. "2017-05-02T20:00:00Z",
  254. "2017-05-02T21:00:00Z",
  255. "2017-05-02T22:00:00Z",
  256. "2017-05-02T23:00:00Z",
  257. "2017-05-03T00:00:00Z",
  258. "2017-05-03T01:00:00Z",
  259. "2017-05-03T02:00:00Z",
  260. "2017-05-03T03:00:00Z",
  261. "2017-05-03T04:00:00Z",
  262. "2017-05-03T05:00:00Z",
  263. "2017-05-03T06:00:00Z",
  264. "2017-05-03T07:00:00Z",
  265. "2017-05-03T08:00:00Z",
  266. "2017-05-03T09:00:00Z",
  267. "2017-05-03T10:00:00Z"
  268. ],
  269. [
  270. 0.6,
  271. 0.6,
  272. 0.7,
  273. 0.7,
  274. 0.6,
  275. 0.7,
  276. 0.7,
  277. 0.7,
  278. 0.6,
  279. 0.6,
  280. 0.6,
  281. 0.5,
  282. 0.5,
  283. 0.3,
  284. 0.3,
  285. 0.3,
  286. 0.2,
  287. 0.2,
  288. 0.2,
  289. 0.2,
  290. 0.2,
  291. 0.3,
  292. 0.3,
  293. 0.5,
  294. 0.6
  295. ],
  296. "成都公共服务集群Max",
  297. "--",
  298. 1
  299. ],
  300. [
  301. [
  302. "2017-05-02T10:00:00Z",
  303. "2017-05-02T11:00:00Z",
  304. "2017-05-02T12:00:00Z",
  305. "2017-05-02T13:00:00Z",
  306. "2017-05-02T14:00:00Z",
  307. "2017-05-02T15:00:00Z",
  308. "2017-05-02T16:00:00Z",
  309. "2017-05-02T17:00:00Z",
  310. "2017-05-02T18:00:00Z",
  311. "2017-05-02T19:00:00Z",
  312. "2017-05-02T20:00:00Z",
  313. "2017-05-02T21:00:00Z",
  314. "2017-05-02T22:00:00Z",
  315. "2017-05-02T23:00:00Z",
  316. "2017-05-03T00:00:00Z",
  317. "2017-05-03T01:00:00Z",
  318. "2017-05-03T02:00:00Z",
  319. "2017-05-03T03:00:00Z",
  320. "2017-05-03T04:00:00Z",
  321. "2017-05-03T05:00:00Z",
  322. "2017-05-03T06:00:00Z",
  323. "2017-05-03T07:00:00Z",
  324. "2017-05-03T08:00:00Z",
  325. "2017-05-03T09:00:00Z",
  326. "2017-05-03T10:00:00Z"
  327. ],
  328. [
  329. 0.205,
  330. 0.221,
  331. 0.22733333333333333,
  332. 0.22566666666666663,
  333. 0.2213333333333333,
  334. 0.22566666666666663,
  335. 0.22833333333333328,
  336. 0.221,
  337. 0.21266666666666664,
  338. 0.206,
  339. 0.20166666666666666,
  340. 0.19933333333333333,
  341. 0.1796666666666667,
  342. 0.14533333333333334,
  343. 0.12966666666666665,
  344. 0.12300000000000001,
  345. 0.12166666666666669,
  346. 0.12200000000000003,
  347. 0.12100000000000001,
  348. 0.12100000000000001,
  349. 0.12066666666666667,
  350. 0.12233333333333336,
  351. 0.14200000000000002,
  352. 0.17333333333333334,
  353. 0.20299999999999996
  354. ],
  355. "成都公共服务集群Avg",
  356. "--",
  357. 1
  358. ],
  359. [
  360. [
  361. "2017-05-02T10:00:00Z",
  362. "2017-05-02T11:00:00Z",
  363. "2017-05-02T12:00:00Z",
  364. "2017-05-02T13:00:00Z",
  365. "2017-05-02T14:00:00Z",
  366. "2017-05-02T15:00:00Z",
  367. "2017-05-02T16:00:00Z",
  368. "2017-05-02T17:00:00Z",
  369. "2017-05-02T18:00:00Z",
  370. "2017-05-02T19:00:00Z",
  371. "2017-05-02T20:00:00Z",
  372. "2017-05-02T21:00:00Z",
  373. "2017-05-02T22:00:00Z",
  374. "2017-05-02T23:00:00Z",
  375. "2017-05-03T00:00:00Z",
  376. "2017-05-03T01:00:00Z",
  377. "2017-05-03T02:00:00Z",
  378. "2017-05-03T03:00:00Z",
  379. "2017-05-03T04:00:00Z",
  380. "2017-05-03T05:00:00Z",
  381. "2017-05-03T06:00:00Z",
  382. "2017-05-03T07:00:00Z",
  383. "2017-05-03T08:00:00Z",
  384. "2017-05-03T09:00:00Z",
  385. "2017-05-03T10:00:00Z"
  386. ],
  387. [
  388. 1.0,
  389. 1.6,
  390. 0.9,
  391. 1.4,
  392. 1.3,
  393. 0.8,
  394. 1.1,
  395. 0.9,
  396. 1.0,
  397. 1.4,
  398. 1.6,
  399. 1.6,
  400. 1.3,
  401. 1.0,
  402. 1.5,
  403. 0.8,
  404. 1.0,
  405. 0.8,
  406. 1.0,
  407. 1.0,
  408. 0.9,
  409. 1.6,
  410. 0.9,
  411. 1.0,
  412. 1.6
  413. ],
  414. "成都实时计算生产集群Max",
  415. "-.",
  416. 1
  417. ],
  418. [
  419. [
  420. "2017-05-02T10:00:00Z",
  421. "2017-05-02T11:00:00Z",
  422. "2017-05-02T12:00:00Z",
  423. "2017-05-02T13:00:00Z",
  424. "2017-05-02T14:00:00Z",
  425. "2017-05-02T15:00:00Z",
  426. "2017-05-02T16:00:00Z",
  427. "2017-05-02T17:00:00Z",
  428. "2017-05-02T18:00:00Z",
  429. "2017-05-02T19:00:00Z",
  430. "2017-05-02T20:00:00Z",
  431. "2017-05-02T21:00:00Z",
  432. "2017-05-02T22:00:00Z",
  433. "2017-05-02T23:00:00Z",
  434. "2017-05-03T00:00:00Z",
  435. "2017-05-03T01:00:00Z",
  436. "2017-05-03T02:00:00Z",
  437. "2017-05-03T03:00:00Z",
  438. "2017-05-03T04:00:00Z",
  439. "2017-05-03T05:00:00Z",
  440. "2017-05-03T06:00:00Z",
  441. "2017-05-03T07:00:00Z",
  442. "2017-05-03T08:00:00Z",
  443. "2017-05-03T09:00:00Z",
  444. "2017-05-03T10:00:00Z"
  445. ],
  446. [
  447. 0.47907407407407404,
  448. 0.4896296296296296,
  449. 0.4844444444444444,
  450. 0.48759259259259263,
  451. 0.4838888888888889,
  452. 0.48277777777777775,
  453. 0.48407407407407405,
  454. 0.48148148148148145,
  455. 0.4807407407407408,
  456. 0.4838888888888889,
  457. 0.47833333333333333,
  458. 0.477037037037037,
  459. 0.47129629629629627,
  460. 0.46203703703703697,
  461. 0.457037037037037,
  462. 0.44629629629629625,
  463. 0.43870370370370365,
  464. 0.44009259259259254,
  465. 0.4366666666666667,
  466. 0.44814814814814813,
  467. 0.43574074074074065,
  468. 0.4403703703703704,
  469. 0.44296296296296295,
  470. 0.45537037037037037,
  471. 0.47351851851851856
  472. ],
  473. "成都实时计算生产集群Avg",
  474. "-.",
  475. 1
  476. ]
  477. ],
  478. "unit": "percent"
  479. }
  480. }

mem

  1. {
  2. "status": 0,
  3. "data": {
  4. "unit": "percent",
  5. "cluster_used": [
  6. [
  7. [
  8. "2017-05-02T10:00:00Z",
  9. "2017-05-02T11:00:00Z",
  10. "2017-05-02T12:00:00Z",
  11. "2017-05-02T13:00:00Z",
  12. "2017-05-02T14:00:00Z",
  13. "2017-05-02T15:00:00Z",
  14. "2017-05-02T16:00:00Z",
  15. "2017-05-02T17:00:00Z",
  16. "2017-05-02T18:00:00Z",
  17. "2017-05-02T19:00:00Z",
  18. "2017-05-02T20:00:00Z",
  19. "2017-05-02T21:00:00Z",
  20. "2017-05-02T22:00:00Z",
  21. "2017-05-02T23:00:00Z",
  22. "2017-05-03T00:00:00Z",
  23. "2017-05-03T01:00:00Z",
  24. "2017-05-03T02:00:00Z",
  25. "2017-05-03T03:00:00Z",
  26. "2017-05-03T04:00:00Z",
  27. "2017-05-03T05:00:00Z",
  28. "2017-05-03T06:00:00Z",
  29. "2017-05-03T07:00:00Z",
  30. "2017-05-03T08:00:00Z",
  31. "2017-05-03T09:00:00Z",
  32. "2017-05-03T10:00:00Z"
  33. ],
  34. [
  35. 41.559843696801806,
  36. 40.74939119639767,
  37. 42.464594768453985,
  38. 39.56493686247834,
  39. 39.38183851815913,
  40. 41.83533907312381,
  41. 42.186431173206515,
  42. 41.77075746154489,
  43. 43.15355341349245,
  44. 40.2560884530201,
  45. 40.612806301195974,
  46. 40.17208168770475,
  47. 39.26844761167942,
  48. 39.27359007858946,
  49. 39.3602648820336,
  50. 40.77614811168014,
  51. 41.16996122304082,
  52. 40.48212962102194,
  53. 39.64807519941649,
  54. 39.69135922627997,
  55. 39.93834507490008,
  56. 39.676415463423425,
  57. 39.7004160235416,
  58. 40.424950648192464,
  59. 43.71515398608337
  60. ],
  61. "成都综合生产集群",
  62. "-",
  63. 1
  64. ],
  65. [
  66. [
  67. "2017-05-02T10:00:00Z",
  68. "2017-05-02T11:00:00Z",
  69. "2017-05-02T12:00:00Z",
  70. "2017-05-02T13:00:00Z",
  71. "2017-05-02T14:00:00Z",
  72. "2017-05-02T15:00:00Z",
  73. "2017-05-02T16:00:00Z",
  74. "2017-05-02T17:00:00Z",
  75. "2017-05-02T18:00:00Z",
  76. "2017-05-02T19:00:00Z",
  77. "2017-05-02T20:00:00Z",
  78. "2017-05-02T21:00:00Z",
  79. "2017-05-02T22:00:00Z",
  80. "2017-05-02T23:00:00Z",
  81. "2017-05-03T00:00:00Z",
  82. "2017-05-03T01:00:00Z",
  83. "2017-05-03T02:00:00Z",
  84. "2017-05-03T03:00:00Z",
  85. "2017-05-03T04:00:00Z",
  86. "2017-05-03T05:00:00Z",
  87. "2017-05-03T06:00:00Z",
  88. "2017-05-03T07:00:00Z",
  89. "2017-05-03T08:00:00Z",
  90. "2017-05-03T09:00:00Z",
  91. "2017-05-03T10:00:00Z"
  92. ],
  93. [
  94. 9.86611183573132,
  95. 9.904480207624996,
  96. 9.953193319987527,
  97. 9.986292592591917,
  98. 10.011676527432902,
  99. 10.033484498481942,
  100. 10.060269443329528,
  101. 10.092363782382673,
  102. 10.119958846349563,
  103. 10.143233123186388,
  104. 10.16599456851655,
  105. 10.184254228552158,
  106. 10.205282648341012,
  107. 10.223769097598943,
  108. 10.241142289720106,
  109. 10.261607349938483,
  110. 10.276952971915566,
  111. 10.291465123763087,
  112. 10.314899568084247,
  113. 10.336819162428108,
  114. 10.351877699574668,
  115. 10.366226262766864,
  116. 10.38204672910648,
  117. 10.404104364663143,
  118. 10.415037111304112
  119. ],
  120. "成都准实时生产集群",
  121. ":",
  122. 1
  123. ],
  124. [
  125. [
  126. "2017-05-02T10:00:00Z",
  127. "2017-05-02T11:00:00Z",
  128. "2017-05-02T12:00:00Z",
  129. "2017-05-02T13:00:00Z",
  130. "2017-05-02T14:00:00Z",
  131. "2017-05-02T15:00:00Z",
  132. "2017-05-02T16:00:00Z",
  133. "2017-05-02T17:00:00Z",
  134. "2017-05-02T18:00:00Z",
  135. "2017-05-02T19:00:00Z",
  136. "2017-05-02T20:00:00Z",
  137. "2017-05-02T21:00:00Z",
  138. "2017-05-02T22:00:00Z",
  139. "2017-05-02T23:00:00Z",
  140. "2017-05-03T00:00:00Z",
  141. "2017-05-03T01:00:00Z",
  142. "2017-05-03T02:00:00Z",
  143. "2017-05-03T03:00:00Z",
  144. "2017-05-03T04:00:00Z",
  145. "2017-05-03T05:00:00Z",
  146. "2017-05-03T06:00:00Z",
  147. "2017-05-03T07:00:00Z",
  148. "2017-05-03T08:00:00Z",
  149. "2017-05-03T09:00:00Z",
  150. "2017-05-03T10:00:00Z"
  151. ],
  152. [
  153. 3.1013511755054584,
  154. 3.101855899450318,
  155. 3.1025153858361056,
  156. 3.103106732211931,
  157. 3.102225375799645,
  158. 3.0999502970653414,
  159. 3.095966717908926,
  160. 3.0993849941009293,
  161. 3.1027293102434976,
  162. 3.103017882983254,
  163. 3.1027545945193276,
  164. 3.1048930187268184,
  165. 3.1052454600736548,
  166. 3.1054586354672713,
  167. 3.1070698855602497,
  168. 3.1062201395536557,
  169. 3.1061228183718685,
  170. 3.107513807805786,
  171. 3.1082041555834894,
  172. 3.1070364532291586,
  173. 3.1074032574212325,
  174. 3.1071100590153216,
  175. 3.1052709670292558,
  176. 3.1041326988919438,
  177. 3.1040742150866016
  178. ],
  179. "成都公共服务集群",
  180. "--",
  181. 1
  182. ],
  183. [
  184. [
  185. "2017-05-02T10:00:00Z",
  186. "2017-05-02T11:00:00Z",
  187. "2017-05-02T12:00:00Z",
  188. "2017-05-02T13:00:00Z",
  189. "2017-05-02T14:00:00Z",
  190. "2017-05-02T15:00:00Z",
  191. "2017-05-02T16:00:00Z",
  192. "2017-05-02T17:00:00Z",
  193. "2017-05-02T18:00:00Z",
  194. "2017-05-02T19:00:00Z",
  195. "2017-05-02T20:00:00Z",
  196. "2017-05-02T21:00:00Z",
  197. "2017-05-02T22:00:00Z",
  198. "2017-05-02T23:00:00Z",
  199. "2017-05-03T00:00:00Z",
  200. "2017-05-03T01:00:00Z",
  201. "2017-05-03T02:00:00Z",
  202. "2017-05-03T03:00:00Z",
  203. "2017-05-03T04:00:00Z",
  204. "2017-05-03T05:00:00Z",
  205. "2017-05-03T06:00:00Z",
  206. "2017-05-03T07:00:00Z",
  207. "2017-05-03T08:00:00Z",
  208. "2017-05-03T09:00:00Z",
  209. "2017-05-03T10:00:00Z"
  210. ],
  211. [
  212. 45.41277042582528,
  213. 45.41989379416655,
  214. 45.42122093747018,
  215. 45.417227530086905,
  216. 45.42400258453385,
  217. 45.42591616288012,
  218. 45.43529152096015,
  219. 45.432878690074524,
  220. 45.43503409527535,
  221. 45.4366135696206,
  222. 45.4394943710367,
  223. 45.44152108869965,
  224. 45.45026128647964,
  225. 45.452896639683345,
  226. 45.45568743292489,
  227. 45.4621267020261,
  228. 45.461923846942625,
  229. 45.46279586878825,
  230. 45.46414451530991,
  231. 45.46501363557069,
  232. 45.464187116873696,
  233. 45.470131148419235,
  234. 45.475681233587615,
  235. 45.47919700411408,
  236. 45.48149010526161
  237. ],
  238. "成都实时计算生产集群",
  239. "-.",
  240. 1
  241. ]
  242. ]
  243. }
  244. }

net

  1. {
  2. "status": 0,
  3. "data": {
  4. "unit": "bytes",
  5. "cluster_used": [
  6. [
  7. [
  8. "2017-05-02T10:00:00Z",
  9. "2017-05-02T11:00:00Z",
  10. "2017-05-02T12:00:00Z",
  11. "2017-05-02T13:00:00Z",
  12. "2017-05-02T14:00:00Z",
  13. "2017-05-02T15:00:00Z",
  14. "2017-05-02T16:00:00Z",
  15. "2017-05-02T17:00:00Z",
  16. "2017-05-02T18:00:00Z",
  17. "2017-05-02T19:00:00Z",
  18. "2017-05-02T20:00:00Z",
  19. "2017-05-02T21:00:00Z",
  20. "2017-05-02T22:00:00Z",
  21. "2017-05-02T23:00:00Z",
  22. "2017-05-03T00:00:00Z",
  23. "2017-05-03T01:00:00Z",
  24. "2017-05-03T02:00:00Z",
  25. "2017-05-03T03:00:00Z",
  26. "2017-05-03T04:00:00Z",
  27. "2017-05-03T05:00:00Z",
  28. "2017-05-03T06:00:00Z",
  29. "2017-05-03T07:00:00Z",
  30. "2017-05-03T08:00:00Z",
  31. "2017-05-03T09:00:00Z",
  32. "2017-05-03T10:00:00Z"
  33. ],
  34. [
  35. 740191106.9591706,
  36. 732143762.3639017,
  37. 1224186008.6012604,
  38. 241129075.90490088,
  39. 253334651.1863219,
  40. 590726649.6702555,
  41. 490179204.7556401,
  42. 534008137.0566127,
  43. 9006365452.514193,
  44. 406317013.7863771,
  45. 4578381126.880557,
  46. 3774726781.29547,
  47. 182529282.4383636,
  48. 148620102.9592515,
  49. 141276126.15879005,
  50. 426812791.06152344,
  51. 671517948.6560013,
  52. 1213834049.0434918,
  53. 133880561.3335966,
  54. 107433298.17489806,
  55. 194509740.4016746,
  56. 121466058.17265344,
  57. 141218260.32613984,
  58. 582745614.7321746,
  59. 1275510360.6271963
  60. ],
  61. "成都综合生产集群",
  62. "-",
  63. 1
  64. ],
  65. [
  66. [
  67. "2017-05-02T10:00:00Z",
  68. "2017-05-02T11:00:00Z",
  69. "2017-05-02T12:00:00Z",
  70. "2017-05-02T13:00:00Z",
  71. "2017-05-02T14:00:00Z",
  72. "2017-05-02T15:00:00Z",
  73. "2017-05-02T16:00:00Z",
  74. "2017-05-02T17:00:00Z",
  75. "2017-05-02T18:00:00Z",
  76. "2017-05-02T19:00:00Z",
  77. "2017-05-02T20:00:00Z",
  78. "2017-05-02T21:00:00Z",
  79. "2017-05-02T22:00:00Z",
  80. "2017-05-02T23:00:00Z",
  81. "2017-05-03T00:00:00Z",
  82. "2017-05-03T01:00:00Z",
  83. "2017-05-03T02:00:00Z",
  84. "2017-05-03T03:00:00Z",
  85. "2017-05-03T04:00:00Z",
  86. "2017-05-03T05:00:00Z",
  87. "2017-05-03T06:00:00Z",
  88. "2017-05-03T07:00:00Z",
  89. "2017-05-03T08:00:00Z",
  90. "2017-05-03T09:00:00Z",
  91. "2017-05-03T10:00:00Z"
  92. ],
  93. [
  94. 24644200.151862096,
  95. 29280136.238222804,
  96. 30047306.8714382,
  97. 30553392.654727235,
  98. 29663989.85666666,
  99. 32461749.02974468,
  100. 31829281.047624804,
  101. 29235222.17388889,
  102. 26875146.68072659,
  103. 26058503.420243893,
  104. 24562733.368856475,
  105. 21969234.360399805,
  106. 18095981.260555554,
  107. 8650366.330000002,
  108. 5701471.570555556,
  109. 5477194.959999999,
  110. 5571601.788888888,
  111. 4502953.812777777,
  112. 3820882.881111112,
  113. 3991926.75,
  114. 3432615.6977777774,
  115. 3971269.0327777774,
  116. 6161031.252222222,
  117. 12780610.482669722,
  118. 24811113.96763854
  119. ],
  120. "成都准实时生产集群",
  121. ":",
  122. 1
  123. ],
  124. [
  125. [
  126. "2017-05-02T10:00:00Z",
  127. "2017-05-02T11:00:00Z",
  128. "2017-05-02T12:00:00Z",
  129. "2017-05-02T13:00:00Z",
  130. "2017-05-02T14:00:00Z",
  131. "2017-05-02T15:00:00Z",
  132. "2017-05-02T16:00:00Z",
  133. "2017-05-02T17:00:00Z",
  134. "2017-05-02T18:00:00Z",
  135. "2017-05-02T19:00:00Z",
  136. "2017-05-02T20:00:00Z",
  137. "2017-05-02T21:00:00Z",
  138. "2017-05-02T22:00:00Z",
  139. "2017-05-02T23:00:00Z",
  140. "2017-05-03T00:00:00Z",
  141. "2017-05-03T01:00:00Z",
  142. "2017-05-03T02:00:00Z",
  143. "2017-05-03T03:00:00Z",
  144. "2017-05-03T04:00:00Z",
  145. "2017-05-03T05:00:00Z",
  146. "2017-05-03T06:00:00Z",
  147. "2017-05-03T07:00:00Z",
  148. "2017-05-03T08:00:00Z",
  149. "2017-05-03T09:00:00Z",
  150. "2017-05-03T10:00:00Z"
  151. ],
  152. [
  153. 5868917.336666667,
  154. 6805888.212777778,
  155. 7033584.116666666,
  156. 7177579.659999999,
  157. 7019785.335555555,
  158. 7257586.698333333,
  159. 7220715.21918737,
  160. 6662752.977777777,
  161. 6358251.01611111,
  162. 5974696.253611112,
  163. 5614469.3941466,
  164. 4883432.344076132,
  165. 3349789.178333334,
  166. 1514398.851111111,
  167. 1005678.5925286344,
  168. 751628.5944990893,
  169. 683388.0003354326,
  170. 612623.9516887406,
  171. 577094.3985633355,
  172. 601257.7691676699,
  173. 489821.4087297397,
  174. 614250.6166666667,
  175. 1155819.171111111,
  176. 3080711.452222222,
  177. 5986306.538728195
  178. ],
  179. "成都公共服务集群",
  180. "--",
  181. 1
  182. ],
  183. [
  184. [
  185. "2017-05-02T10:00:00Z",
  186. "2017-05-02T11:00:00Z",
  187. "2017-05-02T12:00:00Z",
  188. "2017-05-02T13:00:00Z",
  189. "2017-05-02T14:00:00Z",
  190. "2017-05-02T15:00:00Z",
  191. "2017-05-02T16:00:00Z",
  192. "2017-05-02T17:00:00Z",
  193. "2017-05-02T18:00:00Z",
  194. "2017-05-02T19:00:00Z",
  195. "2017-05-02T20:00:00Z",
  196. "2017-05-02T21:00:00Z",
  197. "2017-05-02T22:00:00Z",
  198. "2017-05-02T23:00:00Z",
  199. "2017-05-03T00:00:00Z",
  200. "2017-05-03T01:00:00Z",
  201. "2017-05-03T02:00:00Z",
  202. "2017-05-03T03:00:00Z",
  203. "2017-05-03T04:00:00Z",
  204. "2017-05-03T05:00:00Z",
  205. "2017-05-03T06:00:00Z",
  206. "2017-05-03T07:00:00Z",
  207. "2017-05-03T08:00:00Z",
  208. "2017-05-03T09:00:00Z",
  209. "2017-05-03T10:00:00Z"
  210. ],
  211. [
  212. 2256709.234095427,
  213. 2343184.355555556,
  214. 2462284.1481485595,
  215. 2195248.4630638137,
  216. 2174596.2414394426,
  217. 2213417.3536398998,
  218. 2201958.87471844,
  219. 2207822.7423259546,
  220. 2136247.7498547435,
  221. 2159316.2343708132,
  222. 2096976.0488087737,
  223. 2048819.5878801981,
  224. 2010078.9540248837,
  225. 1975589.4469444447,
  226. 1960974.9838657342,
  227. 1885929.6162300482,
  228. 1826412.2681440057,
  229. 1831622.458633648,
  230. 1786836.9118909575,
  231. 1863510.0227612609,
  232. 1784996.215604489,
  233. 1823078.1324613318,
  234. 1876538.2913312342,
  235. 1996154.3453757218,
  236. 2242649.655
  237. ],
  238. "成都实时计算生产集群",
  239. "-.",
  240. 1
  241. ]
  242. ]
  243. }
  244. }

用户接口

用户组列表

  1. {
  2. "count": 5,
  3. "next": null,
  4. "previous": null,
  5. "results": [
  6. {
  7. "id": 1,
  8. "url": "http://127.0.0.1:8000/api/users/staffGroups/1",
  9. "name": "group_1",
  10. "description": "group_1 test",
  11. "create_user": "wanghuan",
  12. "join_date": "2017-04-13T05:59:22.350092Z",
  13. "staffs": "http://127.0.0.1:8000/api/users/staffGroups/group_1/staffs"
  14. },
  15. {
  16. "id": 2,
  17. "url": "http://127.0.0.1:8000/api/users/staffGroups/2",
  18. "name": "group_2",
  19. "description": "group_2",
  20. "create_user": "",
  21. "join_date": "2017-04-13T05:59:22.355804Z",
  22. "staffs": "http://127.0.0.1:8000/api/users/staffGroups/group_2/staffs"
  23. },
  24. {
  25. "id": 3,
  26. "url": "http://127.0.0.1:8000/api/users/staffGroups/3",
  27. "name": "group_3",
  28. "description": "group_3",
  29. "create_user": "",
  30. "join_date": "2017-04-13T05:59:22.357126Z",
  31. "staffs": "http://127.0.0.1:8000/api/users/staffGroups/group_3/staffs"
  32. },
  33. {
  34. "id": 4,
  35. "url": "http://127.0.0.1:8000/api/users/staffGroups/4",
  36. "name": "group_4",
  37. "description": "group_4",
  38. "create_user": "",
  39. "join_date": "2017-04-13T05:59:22.358386Z",
  40. "staffs": "http://127.0.0.1:8000/api/users/staffGroups/group_4/staffs"
  41. },
  42. {
  43. "id": 5,
  44. "url": "http://127.0.0.1:8000/api/users/staffGroups/5",
  45. "name": "group_add1",
  46. "description": "group_add1",
  47. "create_user": "wanghuan",
  48. "join_date": "2017-04-13T07:36:34.525401Z",
  49. "staffs": "http://127.0.0.1:8000/api/users/staffGroups/group_add1/staffs"
  50. }
  51. ]
  52. }

创建用户组

查看用户组信息

  1. {
  2. "id": 1,
  3. "url": "http://127.0.0.1:8000/api/users/staffGroups/1",
  4. "name": "group_1",
  5. "description": "group_1 test",
  6. "create_user": "wanghuan",
  7. "join_date": "2017-04-13T05:59:22.350092Z",
  8. "staffs": "http://127.0.0.1:8000/api/users/staffGroups/group_1/staffs"
  9. }

查看某个用户组用户列表

  1. {
  2. "count": 4,
  3. "next": null,
  4. "previous": null,
  5. "results": [
  6. {
  7. "id": 1,
  8. "group": {
  9. "id": 1,
  10. "url": "http://127.0.0.1:8000/api/users/staffGroups/1",
  11. "name": "group_1",
  12. "description": "group_1 test",
  13. "create_user": "wanghuan",
  14. "join_date": "2017-04-13T05:59:22.350092Z",
  15. "staffs": "http://127.0.0.1:8000/api/users/staffGroups/group_1/staffs"
  16. },
  17. "name": "Bob",
  18. "code": "Bob",
  19. "email": "Bob@example.com",
  20. "join_date": "2017-04-13T05:59:34.536475Z"
  21. },
  22. {
  23. "id": 5,
  24. "group": {
  25. "id": 1,
  26. "url": "http://127.0.0.1:8000/api/users/staffGroups/1",
  27. "name": "group_1",
  28. "description": "group_1 test",
  29. "create_user": "wanghuan",
  30. "join_date": "2017-04-13T05:59:22.350092Z",
  31. "staffs": "http://127.0.0.1:8000/api/users/staffGroups/group_1/staffs"
  32. },
  33. "name": "123123",
  34. "code": "123",
  35. "email": "123123",
  36. "join_date": "2017-04-13T08:14:43.861935Z"
  37. },
  38. {
  39. "id": 6,
  40. "group": {
  41. "id": 1,
  42. "url": "http://127.0.0.1:8000/api/users/staffGroups/1",
  43. "name": "group_1",
  44. "description": "group_1 test",
  45. "create_user": "wanghuan",
  46. "join_date": "2017-04-13T05:59:22.350092Z",
  47. "staffs": "http://127.0.0.1:8000/api/users/staffGroups/group_1/staffs"
  48. },
  49. "name": "1341",
  50. "code": "13413",
  51. "email": "4134134134",
  52. "join_date": "2017-04-13T08:17:40.189906Z"
  53. },
  54. {
  55. "id": 7,
  56. "group": {
  57. "id": 1,
  58. "url": "http://127.0.0.1:8000/api/users/staffGroups/1",
  59. "name": "group_1",
  60. "description": "group_1 test",
  61. "create_user": "wanghuan",
  62. "join_date": "2017-04-13T05:59:22.350092Z",
  63. "staffs": "http://127.0.0.1:8000/api/users/staffGroups/group_1/staffs"
  64. },
  65. "name": "test1",
  66. "code": "test",
  67. "email": "123123",
  68. "join_date": "2017-04-13T08:51:37.881727Z"
  69. }
  70. ]
  71. }

创建看某个用户组用户

添加新批注
在作者公开此批注前,只有你和作者可见。
回复批注