@a5635268
2015-09-14T10:56:22.000000Z
字数 4592
阅读 1803
mongoDB
mapReduce从字面上来理解就是两个过程:map映射以及reduce化简。是一种比较先进的大数据处理方法,其难度不高,从性能上来说属于比较暴力的(通过N台服务器同时来计算),但相较于group以及aggregate来说,功能更强大,并更加灵活。

在这个映射化简操作中,MongoDB对每个输入文档(例如集合中满足查询条件的文档)执行了map操作。映射操作输出了键值对结果。对那些有多个值的关键字,MongoDB执reduce操作,收集并压缩了最终的聚合结果。然后MongoDB把结果保存到一个集合中。化简函数还可以把结果输出到finalize函数,进一步对聚合结果做处理,当然这步是可选的。
在MongoDB中,所有的映射化简函数都是使用JavaScript编写,并且运行在 mongod 进程中。映射化简操作使用一个集合中文档作为输入,并且可以在映射阶段之前执行任意的排序和限定操作。 mapReduce 命令可以把结果作为一个文档来返回,也可以把结果写入集合。输入集合和输出集合可以是分片的。
更多参考: http://docs.mongodb.org/manual/reference/command/mapReduce/
map: function() {emit(this.cat_id,this.goods_number); }, # 函数内部要调用内置的emit函数,cat_id代表根据cat_id来进行分组,goods_number代表把文档中的goods_number字段映射到cat_id分组上的数据,其中this是指向向前的文档的。reduce: function(cat_id,all_goods_number) {return Array.sum(all_goods_number)}, # cat_id代表着cat_id当前的这一组,all_goods_number代表当前这一组的goods_number集合out: <output>, # 输出到某一个集合中,注意本属性来还支持如果输出的集合如果已经存在了,那是替换,合并还是继续reduce? 另外还支持输出到其他db的分片中,具体用到时查阅文档query: <document>, # 一个查询表达式,是先查询出来,再进行mapReduce的sort: <document>, # 发往map函数前先给文档排序limit: <number>, # 发往map函数的文档数量上限,该参数貌似不能用在分片模式下的mapreducefinalize: function(key, reducedValue) {return modifiedObject; }, # 从reduce函数中接受的参数key与reducedValue,并且可以访问scope中设定的变量scope: <document>, # 指定一个全局变量,能应用于finalize和reduce函数jsMode: <boolean>, # 布尔值,是否减少执行过程中BSON和JS的转换,默认true,true时BSON-->js-->map-->reduce-->BSON,false时 BSON-->JS-->map-->BSON-->JS-->reduce-->BSON,可处理非常大的mapreduce。verbose: <boolean> # 是否产生更加详细的服务器日志,默认true
# 求每组的库存总量var map = function(){emit(this.cat_id,this.goods_number);}var reduce = function(cat_id,numbers){return Array.sum(numbers);}db.goods.mapReduce(map,reduce,{out:'res'})# 查看Array支持的方法for(var i in Array){printjson(i);}"contains""unique""shuffle""tojson""fetchRefs""sum""avg""stdDev"# 求每个栏目的平均价格var map = function(){emit(this.cat_id,this.shop_price);}var reduce = function(cat_id,prices){var avgprice = Array.avg(prices);return Math.round(avgprice,2);}db.goods.mapReduce(map,reduce,{out:'res'});# 求出每组的最大价格var map = function(){emit(this.cat_id,this.shop_price);}//错误操作 ↓↓ 应该在finalize函数中做处理var reduce = function(cat_id,prices){var max = 0;for(var i in prices){if(i > max)max = i;}return max;}var reduce = function(cat_id,prices){return {cat_id:cat_id,prices:prices};}var finalize = function(cat_id, prices) {var max = 0;if(prices.prices !== null){var obj = prices.prices;for(var i in obj){if(obj[i] > max)max = obj[i]}}return max == 0 ? prices : max;}db.goods.mapReduce(map,reduce,{out:'res1',finalize:finalize,query:{'shop_price':{$gt:0}}});# 获得每组的商品集合var map = function(){emit(this.cat_id,this.goods_name);}var reduce = function(cat_id,goods_names){return {cat_id:cat_id,goods_names:goods_names}}var finalize = function(key, reducedValue) {return reducedValue == null ? 'none value' : reducedValue; //对reduce的值进行二次处理}db.runCommand({mapReduce:'goods',map:map,reduce:reduce,finalize:finalize,out:'res2'})# 对于price大于100的才进行分组映射## 方法1:var map = function(){if(this.shop_price > 100){emit(this.cat_id,{name:this.goods_name,price:this.shop_price});}}var reduce = function(cat_id,goods_names){return {cat_id:cat_id,goods_names:goods_names}}db.runCommand({mapReduce:'goods',map:map,reduce:reduce,out:'res2'})## 方法2 首推此方法var map = function(){emit(this.cat_id,{name:this.goods_name,price:this.shop_price});}var reduce = function(cat_id,goods_names){return {cat_id:cat_id,goods_names:goods_names}}db.runCommand({mapReduce:'goods',map:map,reduce:reduce,query:{'shop_price':{$gt:100}},out:'res2'})
# 数据结构{_id: ObjectId("50a8240b927d5d8b5891743c"),cust_id: "abc123",ord_date: new Date("Oct 04, 2012"),status: 'A',price: 25,items: [ { sku: "mmm", qty: 5, price: 2.5 },{ sku: "nnn", qty: 5, price: 2.5 } ]}# 计算每个顾客的总金额var mapFunction1 = function() {emit(this.cust_id, this.price);};var reduceFunction1 = function(keyCustId, valuesPrices) {return Array.sum(valuesPrices);};db.orders.mapReduce(mapFunction1,reduceFunction1,{ out: "map_reduce_example" })# 计算订单总量和每种 sku 订购量的平均值var mapFunction2 = function() {for (var idx = 0; idx < this.items.length; idx++) {var key = this.items[idx].sku;var value = {count: 1,qty: this.items[idx].qty};emit(key, value);}};var reduceFunction2 = function(keySKU, countObjVals) {reducedVal = { count: 0, qty: 0 };for (var idx = 0; idx < countObjVals.length; idx++) {reducedVal.count += countObjVals[idx].count;reducedVal.qty += countObjVals[idx].qty;}return reducedVal;};var finalizeFunction2 = function (key, reducedVal) {reducedVal.avg = reducedVal.qty/reducedVal.count;return reducedVal;};db.orders.mapReduce(mapFunction2,reduceFunction2,{out: { merge: "map_reduce_example" },query: { ord_date:{ $gt: new Date('01/01/2012') }},finalize: finalizeFunction2})