@dodola
2015-02-25T09:54:37.000000Z
字数 3506
阅读 2453
Java
当一个共享变量被volatile修饰时,它会保证修改的值会立即被更新到主存,当有其他线程需要读取时,它会去内存中读取新值。而普通的共享变量不能保证可见性,因为普通共享变量被修改之后,什么时候被写入主存是不确定的,当其他线程去读取时,此时内存中可能还是原来的旧值,因此无法保证可见性。一旦一个共享变量(类的成员变量、类的静态成员变量)被volatile修饰之后,那么就具备了两层语义:1)保证了不同线程对这个变量进行操作时的可见性,即一个线程修改了某个变量的值,这新值对其他线程来说是立即可见的。2)禁止进行指令重排序。//先看一段代码,假如线程1先执行,线程2后执行://线程1boolean stop = false;while(!stop){doSomething();}//线程2stop = true;这段代码是很典型的一段代码,很多人在中断线程时可能都会采用这种标记办法。但是事实上,这段代码会完全运行正确么?即一定会将线程中断么?不一定,也许在大多数时候,这个代码能够把线程中断,但是也有可能会导致无法中断线程(虽然这个可能性很小,但是只要一旦发生这种情况就会造成死循环了)。下面解释一下这段代码为何有可能导致无法中断线程。在前面已经解释过,每个线程在运行过程中都有自己的工作内存,那么线程1在运行的时候,会将stop变量的值拷贝一份放在自己的工作内存当中。那么当线程2更改了stop变量的值之后,但是还没来得及写入主存当中,线程2转去做其他事情了,那么线程1由于不知道线程2对stop变量的更改,因此还会一直循环下去。但是用volatile修饰之后就变得不一样了:第一:使用volatile关键字会强制将修改的值立即写入主存;第二:使用volatile关键字的话,当线程2进行修改时,会导致线程1的工作内存中缓存变量stop的缓存行无效(反映到硬件层的话,就是CPU的L1或者L2缓存中对应的缓存行无效);第三:由于线程1的工作内存中缓存变量stop的缓存行无效,所以线程1再次读取变量stop的值时会去主存读取。那么在线程2修改stop值时(当然这里包括2个操作,修改线程2工作内存中的值,然后将修改后的值写入内存),会使得线程1的工作内存中缓存变量stop的缓存行无效,然后线程1读取时,发现自己的缓存行无效,它会等待缓存行对应的主存地址被更新之后,然后去对应的主存读取最新的值。那么线程1读取到的就是最新的正确的值。//volatile保证原子性吗?从上面知道volatile关键字保证了操作的可见性,但是volatile能保证对变量的操作是原子性吗?下面看一个例子:public class Test {public volatile int inc = 0;public void increase() {inc++;}public static void main(String[] args) {final Test test = new Test();for(int i=0;i<10;i++){new Thread(){public void run() {for(int j=0;j<1000;j++)test.increase();};}.start();}while(Thread.activeCount()>1) //保证前面的线程都执行完Thread.yield();System.out.println(test.inc);}}大家想一下这段程序的输出结果是多少?也许有些朋友认为是10000。但是事实上运行它会发现每次运行结果都不一致,都是一个小于10000的数字。可能有的朋友就会有疑问,不对啊,上面是对变量inc进行自增操作,由于volatile保证了可见性,那么在每个线程中对inc自增完之后,在其他线程中都能看到修改后的值啊,所以有10个线程分别进行了1000次操作,那么最终inc的值应该是1000*10=10000。这里面就有一个误区了,volatile关键字能保证可见性没有错,但是上面的程序错在没能保证原子性。可见性只能保证每次读取的是最新的值,但是volatile没办法保证对变量的操作的原子性。在前面已经提到过,自增操作是不具备原子性的,它包括读取变量的原始值、进行加1操作、写入工作内存。那么就是说自增操作的三个子操作可能会分割开执行,就有可能导致下面这种情况出现:假如某个时刻变量inc的值为10,线程1对变量进行自增操作,线程1先读取了变量inc的原始值,然后线程1被阻塞了;然后线程2对变量进行自增操作,线程2也去读取变量inc的原始值,由于线程1只是对变量inc进行读取操作,而没有对变量进行修改操作,所以不会导致线程2的工作内存中缓存变量inc的缓存行无效,所以线程2会直接去主存读取inc的值,发现inc的值时10,然后进行加1操作,并把11写入工作内存,最后写入主存。然后线程1接着进行加1操作,由于已经读取了inc的值,注意此时在线程1的工作内存中inc的值仍然为10,所以线程1对inc进行加1操作后inc的值为11,然后将11写入工作内存,最后写入主存。那么两个线程分别进行了一次自增操作后,inc只增加了1。解释到这里,可能有朋友会有疑问,不对啊,前面不是保证一个变量在修改volatile变量时,会让缓存行无效吗?然后其他线程去读就会读到新的值,对,这个没错。这个就是上面的happens-before规则中的volatile变量规则,但是要注意,线程1对变量进行读取操作之后,被阻塞了的话,并没有对inc值进行修改。然后虽然volatile能保证线程2对变量inc的值读取是从内存中读取的,但是线程1没有进行修改,所以线程2根本就不会看到修改的值。根源就在这里,自增操作不是原子性操作,而且volatile也无法保证对变量的任何操作都是原子性的。把上面的代码改成以下任何一种都可以达到效果://采用synchronizedpublic class Test {public int inc = 0;public synchronized void increase() {inc++;}public static void main(String[] args) {final Test test = new Test();for(int i=0;i<10;i++){new Thread(){public void run() {for(int j=0;j<1000;j++)test.increase();};}.start();}while(Thread.activeCount()>1) //保证前面的线程都执行完Thread.yield();System.out.println(test.inc);}}//采用Lockpublic class Test {public int inc = 0;Lock lock = new ReentrantLock();public void increase() {lock.lock();try {inc++;} finally{lock.unlock();}}public static void main(String[] args) {final Test test = new Test();for(int i=0;i<10;i++){new Thread(){public void run() {for(int j=0;j<1000;j++)test.increase();};}.start();}while(Thread.activeCount()>1) //保证前面的线程都执行完Thread.yield();System.out.println(test.inc);}}//采用AtomicIntegerpublic class Test {public AtomicInteger inc = new AtomicInteger();public void increase() {inc.getAndIncrement();}public static void main(String[] args) {final Test test = new Test();for(int i=0;i<10;i++){new Thread(){public void run() {for(int j=0;j<1000;j++)test.increase();};}.start();}while(Thread.activeCount()>1) //保证前面的线程都执行完Thread.yield();System.out.println(test.inc);}}