@ZCDHJ
2018-09-26T16:45:22.000000Z
字数 1727
阅读 685
网络流
题目很显然是要求最小割
根据最大流最小割定理,直接上 Dinic 就行了。
#include <iostream>#include <cstdio>#include <cstring>#include <queue>const int INF = 0x3f3f3f3f;const int MAXN = 1e3;int n, m, edge = -1;int firstEdge[MAXN * MAXN + 5], depth[MAXN * MAXN + 5], curE[MAXN * MAXN + 5], id[MAXN + 5][MAXN + 5];struct Edge {int to, w, nxt;Edge(){}Edge(int x, int y, int z) {to = y;w = z;nxt = firstEdge[x];}} e[(2 * MAXN * MAXN + 4 * MAXN) * 3 + 5];inline int read() {register int x = 0;register char ch = getchar();while(!isdigit(ch)) ch = getchar();while(isdigit(ch)) {x = x * 10 + ch - '0';ch = getchar();}return x;}inline void addEdge(int x, int y, int z) {e[++edge] = Edge(x, y, z);firstEdge[x] = edge;}bool getDepth() {std::queue <int> q;memset(depth, 0, sizeof(depth));depth[1] = 1;q.push(1);while(!q.empty()) {int from = q.front();q.pop();for(int k = firstEdge[from]; ~k; k = e[k].nxt) {int to = e[k].to, w = e[k].w;if(!depth[to] && w > 0) {depth[to] = depth[from] + 1;q.push(to);}}}return depth[n * m] > 0;}int Augment(int x, int flow) {if(x == n * m) return flow;for(int &k = curE[x]; ~k; k = e[k].nxt) {int to = e[k].to, w = e[k].w;if(depth[to] == depth[x] + 1 && w > 0) {int tmp = Augment(to, std::min(flow, w));if(tmp > 0) {e[k].w -= tmp;e[k ^ 1].w += tmp;return tmp;}}}return 0;}int Dinic() {int res = 0, tmp = 0;while(getDepth()) {for(int i = 1; i <= n * m; ++i) curE[i] = firstEdge[i];while((tmp = Augment(1, INF)) > 0) res += tmp;}return res;}int main() {n = read();m = read();memset(firstEdge, -1, sizeof(firstEdge));for(int i = 1; i <= n; ++i) for(int j = 1; j <= m; ++j) id[i][j] = (i - 1) * m + j;for(int i = 1; i <= n; ++i) {for(int j = 1; j < m; ++j) {int v = read();addEdge(id[i][j], id[i][j + 1], v);addEdge(id[i][j + 1], id[i][j], v);}}for(int i = 1; i < n; ++i) {for(int j = 1; j <= m; ++j) {int v = read();addEdge(id[i][j], id[i + 1][j], v);addEdge(id[i + 1][j], id[i][j], v);}}for(int i = 1; i < n; ++i) {for(int j = 1; j < m; ++j) {int v = read();addEdge(id[i][j], id[i + 1][j + 1], v);addEdge(id[i + 1][j + 1], id[i][j], v);}}printf("%d\n", Dinic());return 0;}