@ZCDHJ
2019-09-15T03:48:33.000000Z
字数 3037
阅读 891
未分类
在以下几种情况会出现不合法:1.多个最小值相同的区间无交集或交集不唯一,因为没有重复的数字。2.在几个最小值较大区间的并集中出现了一个最小值较小的子区间,很显然不行。二分答案第一个出现矛盾的位置,将其及其前面的区间按最小值降序排序,然后用一颗支持区间覆盖操作的线段树来维护错误情况 2。
#include <iostream>#include <cstdio>#include <algorithm>const int MAXN = 1e6;const int MAXQ = 25000;int n, Q;struct Range {int l, r, val;Range() : l(0), r(0), val(0) {}friend bool operator< (const Range &lhs, const Range &rhs) {return lhs.val > rhs.val;}} a[MAXQ | 1], b[MAXQ | 1];inline int read() {register int x = 0;register char ch = getchar();while (!isdigit(ch)) ch = getchar();while (isdigit(ch)) {x = x * 10 + ch - '0';ch = getchar();}return x;}namespace SegTree {struct Node {int sumv, lazy;Node *ch[2];Node() : sumv(0), lazy(0) {ch[0] = ch[1] = NULL;}} *root;void push_down(Node *o, int l, int r) {if (o -> lazy) {int mid = (l + r) >> 1;o -> ch[0] -> sumv = (mid - l + 1);o -> ch[0] -> lazy = 1;o -> ch[1] -> sumv = (r - mid);o -> ch[1] -> lazy = 1;o -> lazy = 0;}}void push_up(Node *o) {o -> sumv = o -> ch[0] -> sumv + o -> ch[1] -> sumv;}void build(Node *&o, int l, int r) {if (o == NULL) o = new Node;else o -> sumv = o -> lazy = 0;if (l == r) return;int mid = (l + r) >> 1;build(o -> ch[0], l, mid);build(o -> ch[1], mid + 1, r);}void modify(Node *&o, int l, int r, int ql, int qr) {if (ql <= l && r <= qr) {o -> sumv = (r - l + 1);o -> lazy = 1;return;}push_down(o, l, r);int mid = (l + r) >> 1;if (ql <= mid) modify(o -> ch[0], l, mid, ql, qr);if (mid < qr) modify(o -> ch[1], mid + 1, r, ql, qr);push_up(o);}int query(Node *&o, int l, int r, int ql, int qr) {if (ql <= l && r <= qr) return o -> sumv;push_down(o, l, r);int mid = (l + r) >> 1, res = 0;if (ql <= mid) res = query(o -> ch[0], l, mid, ql, qr);if (mid < qr) res += query(o -> ch[1], mid + 1, r, ql, qr);return res;}}using namespace SegTree;bool check(int lim) {build(root, 1, n);for (int i = 1; i <= lim; ++i) b[i] = a[i];std::sort(b + 1, b + 1 + lim);for (int i = 1, j; i <= lim; i = j) {for (j = i; j <= lim && b[j].val == b[i].val; ++j);int l1 = b[i].l, l2 = b[i].l, r1 = b[i].r, r2 = b[i].r;for (int k = i + 1; k < j; ++k) {l1 = std::min(l1, b[k].l);r1 = std::max(r1, b[k].r);l2 = std::max(l2, b[k].l);r2 = std::min(r2, b[k].r);}if (l2 > r2) return false;if (query(root, 1, n, l2, r2) == (r2 - l2 + 1)) return false;modify(root, 1, n, l1, r1);}return true;}int main() {n = read();Q = read();for (int i = 1; i <= Q; ++i) {a[i].l = read();a[i].r = read();a[i].val = read();}int l = 1, r = Q, mid, ans = 0;while (l <= r) {mid = (l + r) >> 1;if (!check(mid)) {r = mid - 1;ans = mid;} else l = mid + 1;}printf("%d\n", ans);return 0;}
每条不合法的路径都可以与一条从点 出发的路径相对应,那么用总方案数减去不合法的方案数即 ,使用卢卡斯定理计算。
考虑答案其实就是求 ,使用线性筛计算 。
细节:对于每个数计算其最小质因子出现的次数(记为 cnt),在线性筛的时候如果 ,则 ,,否则 ,。
#include <iostream>#include <cstdio>const int MAXN = 1e7;const int MOD = 998244353;int n, tot;int minSum[MAXN | 1], ans[MAXN | 1], prime[MAXN | 1];inline int read() {register int x = 0;register char ch = getchar();while (!isdigit(ch)) ch = getchar();while (isdigit(ch)) {x = x * 10 + ch - '0';ch = getchar();}return x;}int main() {n = read();int res = 0;for (int i = 2; i <= n; ++i) {if (ans[i] == 0) prime[++tot] = i, ans[i] = 2, minSum[i] = 1;for (int j = 1; j <= tot && i * prime[j] <= n; ++j) {if (i % prime[j] == 0) {minSum[i * prime[j]] = minSum[i] + 1;ans[i * prime[j]] = ans[i] * (minSum[i] + 2) / (minSum[i] + 1);break;} else {minSum[i * prime[j]] = 1;ans[i * prime[j]] = ans[i] * 2;}}res += (1LL * (ans[i] * (ans[i] - 1)) / 2) % MOD;res %= MOD;}printf("%d\n", res);}
太神仙了,不改了