@zhangche0526
2017-02-25T06:28:02.000000Z
字数 1923
阅读 883
思路:将边排序,依次向并查集里加边,并且保证此边连接的两个结点不在一个并查集里,加到N-1(N为图中结点数)条边时,就生成了最小生成树
#include<iostream>#include<cstdio>#include<cmath>#include<cstring>#include<algorithm>using namespace std;int ecnt;struct node{int from,to,value;} edge[100001];void add(int from,int to,int value){ecnt++;edge[ecnt].from=from;edge[ecnt].to=to;edge[ecnt].value=value;}int fath[100001];int getfath(int x){if(fath[x]==x) return x;return fath[x]=getfath(fath[x]);}void unionset(int x,int y){fath[getfath(x)]=getfath(y);}int cmp(const node &a,const node &b){if(a.value<b.value) return true;else return false;}long long mstv=0,biancnt=0;int main(){ios::sync_with_stdio(false);int n,m;cin>>n>>m;int from,to,value;int x;for(int i=1;i<=m;i++){cin>>from>>to>>value;add(from,to,value);}for(int i=1;i<=n;i++) fath[i]=i;sort(edge+1,edge+ecnt+1,cmp);for(int i=1;i<=m;i++){if(getfath(edge[i].from)!=getfath(edge[i].to)){unionset(edge[i].from,edge[i].to);mstv+=edge[i].value;biancnt++;}if(biancnt==n-1) break;}cout<<mstv;return 0;}
所谓的Slim Span即为最大边与最小边差值最小的生成树,与最小生成树问题的思路相似
先对边升序排序,对于一个连续的边区间,从小到大枚举L,对于每个L,从小到大枚举R,依次向并查集里加边,加个判断:如果目前的这些边已经使得图连通,就停止枚举,并更新最小值。
#include<iostream>#include<cstdio>#include<algorithm>using namespace std;const int MAXN=100,MAXM=50*99,INF=1<<30;struct node2{int u,v,w;} a[MAXM+1];int acnt;void add2(int u,int v,int w){++acnt,a[acnt].u=u,a[acnt].v=v,a[acnt].w=w;}int fa[MAXN+1];int getfa(int x){if(fa[x]==x) return x;return fa[x]=getfa(fa[x]);}void join(int x,int y){fa[getfa(x)]=getfa(y);}bool cmp(const node2 & a,const node2 & b){return a.w<b.w;}int N,M;int main(){int i;while(cin>>N>>M&&N){acnt=0;for(i=1;i<=N;i++) fa[i]=i;for(i=1;i<=M;i++){int u,v,w;scanf("%d%d%d",&u,&v,&w);add2(u,v,w);}sort(a+1,a+M+1,cmp);int L,R;int minv=INF;for(L=1;L<=M-(N-1)+1;L++){for(i=1;i<=N;i++) fa[i]=i;int times=0;for(R=L;R<=M;R++)if(getfa(a[R].u)!=getfa(a[R].v)){join(a[R].u,a[R].v);++times;if(times==N-1){minv=min(minv,a[R].w-a[L].w);break;}}}if(minv==INF) cout<<-1<<endl;else cout<<minv<<endl;}return 0;}