@JeemyJohn
2020-01-01T05:23:28.000000Z
字数 4868
阅读 1224
SUBSTR(from_unixtime(unix_timestamp()),12,2)
项目:易购APP UV流量预测本周工作:1. 天级UV流量预测模型T+2模型离线效果评估(MAPE:0.0472)、上线、生成事件并与业务方联调;2. 业务方核验过程中天级T+2模型线上效果(平均MAPE:,有一天超过20%)与误差分析,原因定位;3. 业务方小时级模型从预测每小时UV改成预测每小时净增UV、到当前小时累计UV以及动态天级UV,小时级模型方案重新设计;4. 新的小时模型特征设计、样本与特征跑数据落表、数据验证;下周计划:1. 新的小时级模型上线、生成事件并与业务方联调;2. 对已上线模型天级模型进行效果观察与优化;
USE YYADMIN;drop table if exists temp_TEST_NYM_D;create table temp_TEST_NYM_D STORED AS RCFILE ASSELECTif(utm_src is null or utm_src = '', 'direct', utm_src) utm_src,if(utm_src is null or utm_src = '', 'direct', utm_medium) utm_medium,visitor_idFROM( SELECTconcat(TRMNL_TP_ID, CLNT_ID) AS visitor_id,case when t.utm_src is not null and trim(t.utm_src)<>'' then t.utm_srcwhen t5.wap_source is not null then t5.wap_sourceelse t.utm_srcend as utm_src,case when t.utm_medium is not null and trim(t.utm_medium)<>'' then t.utm_mediumwhen t5.wap_medium is not null then t5.wap_mediumelse t.utm_mediumend as utm_mediumFROM bi_sor.tsor_br_trmnl_base_pageview_d tleft join (select * from mobdss.tsor_br_trmnl_event_appreport_d awhere a.statis_date = '20191204') t5on t.clnt_id = t5.client_uidand t.visit_id = t5.session_idWHERE t.statis_date = '20191204'AND t.intfc_tp = 1)T ;drop table if exists temp_TEST_NYM_D_1;create table temp_TEST_NYM_D_1 STORED AS RCFILE ASselect utm_src_cate_id_1,utm_src_cate_nm_1,utm_src_cate_id,utm_src_cate_nm,utm_src_id,utm_src_nmfrom bi_td.tdm_utm_src_td;drop table if exists temp_TEST_NYM_D_2;create table temp_TEST_NYM_D_2 STORED AS RCFILE ASselect CASE WHEN (case when t.utm_src = 'direct' then '60' else nvl(t9.utm_src_cate_id_1, 99) end ) = '60'THEN '直接流量'WHEN (case when t.utm_src = 'direct' then '60' else nvl(t9.utm_src_cate_id_1, 99) end ) <> '60' and(case when t.utm_src = 'direct' then '60' else nvl(t9.utm_src_cate_id_1, 99) end ) <> '99' and(case when t.utm_src = 'direct' then '60' else nvl(t9.utm_src_cate_id_1, 99) end ) IS NOT NULLTHEN '站外流量'ELSE '其他' end is_direct,count(distinct visitor_id) uvfrom temp_TEST_NYM_D tleft join temp_TEST_NYM_D_1 t9on if(t.utm_src = '' or t.utm_src is null or utm_src = 'direct', -- add by 20190103concat(t.utm_src, rand()), concat(utm_src , '/', utm_medium )) = t9.utm_src_nmgroup by CASE WHEN (case when t.utm_src = 'direct' then '60' else nvl(t9.utm_src_cate_id_1, 99) end ) = '60'THEN '直接流量'WHEN (case when t.utm_src = 'direct' then '60' else nvl(t9.utm_src_cate_id_1, 99) end ) <> '60' and(case when t.utm_src = 'direct' then '60' else nvl(t9.utm_src_cate_id_1, 99) end ) <> '99' and(case when t.utm_src = 'direct' then '60' else nvl(t9.utm_src_cate_id_1, 99) end ) IS NOT NULLTHEN '站外流量'ELSE '其他' end;
sfe.tsfe_Hisense_warehouse_sku_sales
sfe.tsfe_Hisense_warehouse_order_base_feature
sfe.tsfe_Hisense_warehouse_order_detail_feature
sfe.tsfe_Hisense_warehouse_sale_detail_feature
SELECTstatis_date, SUM(sale_cnt) AS sum_cnt, SUM(IF(sale_cnt >= 1, 1, 0)) AS pos -- 非零销sku数, SUM(IF(sale_cnt < 1, 1, 0)) AS neg -- 零销sku数FROM(SELECTstatis_date, gds_cd, SUM(sale_cnt) AS sale_cntFROMsfe.tsfe_Hisense_warehouse_sku_salesWHEREstatis_date < '20190930'GROUP BYstatis_date, gds_cd) tGROUP BY statis_dateORDER BY statis_date;
所有店的属性信息表
brock_dim.t_shp_str_inf_sw_ed
sfe.tsfe_ar_v0_store_sales_base_d
订单明细表
BROCK_DWD.t_ord_retail_grp_ord_dtl_d
scpdm.TDM_ORDER_DETAIL_D
sfe.tsfe_mid_total_es_sales_base_info_d
商品属性信息表
brock_dim.t_prd_gds_inf_ed
全渠道库存表
bi_dpa.tdpa_inv_dtl_d
海信线上sku查询逻辑
select*fromsfe.tsfe_ar_order_detail_org_Hisense_dwherebill_type='1'and chnl_cd='50'and order_source in ('B2C', 'TMALL')and vendor_tp='1'and purchase_f in ('0','1')and depot_id in ('0001', '0002', '0003')and status = '30'and statis_date = '${hivevar:statis_date}'and gds_cd in (select gds_cd from sfe.tsfe_salespredict_v3_gds_info_td_hisense)
select*fromsfe.tsfe_ods_auto_rep_ie_salespredict_order_detail_offline_dwherestatis_date = 20190920and instr(brand_nm,'Hisense') != 0and plant_id != fh_dd
SELECTsale_cnt, SUM(IF(val < 0.1, 1, 0)) AS p1, SUM(IF(val >= 0.1 AND val < 0.2, 1, 0)) AS p2, SUM(IF(val >= 0.2 AND val < 0.3, 1, 0)) AS p3, SUM(IF(val >= 0.3 AND val < 0.4, 1, 0)) AS p4, SUM(IF(val >= 0.4 AND val < 0.5, 1, 0)) AS p5, SUM(IF(val >= 0.5 AND val < 0.6, 1, 0)) AS p6, SUM(IF(val >= 0.6 AND val < 0.7, 1, 0)) AS p7, SUM(IF(val >= 0.7 AND val < 0.8, 1, 0)) AS p8, SUM(IF(val >= 0.8 AND val < 0.9, 1, 0)) AS p9, SUM(IF(val >= 0.9 AND val < 1.0, 1, 0)) AS p10, SUM(IF(val > 1.0, 1, 0)) AS p11FROM(SELECTif(label <= 10, label, 11) AS sale_cnt, abs(label - prediction) AS valFROMsfe.tsfe_hisense_eshop_sale_predict_resultsWHERElabel > 0) tGROUP BYsale_cntORDER BYsale_cnt;SELECTsale_cnt, SUM(IF(pred_cnt <=1, 1, 0)) AS cnt1, SUM(IF(pred_cnt = 2, 1, 0)) AS cnt2, SUM(IF(pred_cnt = 4, 1, 0)) AS cnt3, SUM(IF(pred_cnt = 5, 1, 0)) AS cnt4, SUM(IF(pred_cnt = 6, 1, 0)) AS cnt5, SUM(IF(pred_cnt = 7, 1, 0)) AS cnt7, SUM(IF(pred_cnt = 8, 1, 0)) AS cnt8, SUM(IF(pred_cnt = 9, 1, 0)) AS cnt9, SUM(IF(pred_cnt =10, 1, 0)) AS cnt10, SUM(IF(pred_cnt =11, 1, 0)) AS cnt11FROM(SELECTIF(label <= 10, label, 11) AS sale_cnt, IF(round(prediction) <= 10, round(prediction), 11) AS pred_cntFROMsfe.tsfe_hisense_eshop_sale_predict_resultsWHERElabel > 0) tGROUP BYsale_cntORDER BYsale_cnt;
selectstatis_date, count(1) AS cnt, sum(if(sale_cnt > 0, 1, 0)) AS pos, sum(if(sale_cnt > 0, 1, 0))/count(1) AS p1FROMsfe.tsfe_Hisense_warehouse_sku_sales--sfe.tsfe_Hisense_warehouse_order_base_featureWHEREstatis_date >= '20190901'group by statis_dateorder by statis_date