@Channelchan
2018-11-28T10:02:23.000000Z
字数 9391
阅读 64541
1、马丁格尔加仓法
2、反马丁格尔加仓法
Martingale是一种亏损加仓模式 适合胜率高的策略
见 onBar ‘马丁格尔加仓模块’
用参数 nPos 控制加仓次数,参数 Ratio 控制加仓的进场位置。
if 持多头仓位 and 当前加仓次数 nPos < 3:
if 亏损达到Ratio/100:
加仓fixsize*(2**nPos)手数
nPos = nPos+1
elif 持空头仓位 and 当前加仓次数 < 3:
if 亏损达到Ratio:
加仓fixsize*(2**nPos)手数
nPos = nPos+1
if 持有多头仓位 and 死叉:
nPos = 0
elif 持有空头仓位 and 金叉:
nPos = 0
## 大的价格除以小的价格减1lastOrder=self.transactionPrice[symbol]## 多头亏损大于一个百分比(self.transactionPrice[symbol] - bar.close)/bar.close= lastOrder/bar.close-1## 多头盈利大于一个百分比(bar.close-self.transactionPrice[symbol])/self.transactionPrice[symbol]= bar.close/lastOrder-1## 空头亏损大于一个百分比(bar.close - self.transactionPrice[symbol])/self.transactionPrice[symbol]= bar.close/lastOrder-1## 空头盈利大于一个百分比(self.transactionPrice[symbol] - bar.close)/bar.close= lastOrder/bar.close-1
# 设置参数nPos = 0fixsize = 2transactionPrice = {}Ratio = 2# 设置变量self.transactionPrice = {s: 0 for s in self.symbolList}#----------------------------------------------------------------------def onBar(self, bar):"""收到Bar推送(必须由用户继承实现)"""symbol = bar.vtSymbollastOrder=self.transactionPrice[symbol]# 马丁格尔加仓模块________________________________________________if (self.posDict[symbol+'_LONG']!=0 and self.nPos < 3): # 持有多头仓位并且加仓次数不超过3次if lastOrder/bar.close-1 >= self.Ratio/100: # 计算亏损比例,达到2%self.buy(symbol,bar.close*1.02,self.fixsize*(2**self.nPos)) # 加仓 2手、4手、8手self.nPos += 1 # 加仓次数减少 1 次elif (self.posDict[symbol + "_SHORT"] != 0 and self.nPos < 3): # 持有空头仓位并且加仓次数不超过3次if bar.close/lastOrder-1 >= self.Ratio/100: # 计算亏损比例,达到2%self.short(symbol,bar.close*0.98,self.fixsize*(2**self.nPos)) # 加仓 2手、4手、8手self.nPos += 1 # 加仓次数减少 1 次# 发出状态更新事件self.putEvent()
Anti-Martingale是一种亏损加仓模式 适合胜率较低而盈亏比高的策略
见 onBar ‘反马丁格尔加仓模块’
用参数 n 控制加仓次数,参数 Ratio 控制加仓的进场位置。
if 持多头仓位 and 当前加仓次数 nPos < 3:
if 盈利达到Ratio/100:
加仓fixsize*(2**n)手数
nPos = nPos+1
elif 持空头仓位 and 当前加仓次数 < 3:
if 盈利达到Ratio:
加仓fixsize*(2**nPos)手数
nPos = nPos+1
if 持有多头仓位 and 死叉:
nPos = 0
elif 持有空头仓位 and 金叉:
nPos = 0
# 设置参数nPos = 0fixsize = 2transactionPrice = {}Ratio = 0.02# 设置变量self.transactionPrice = {s: 0 for s in self.symbolList}#----------------------------------------------------------------------def onBar(self, bar):"""收到Bar推送(必须由用户继承实现)"""symbol = bar.vtSymbollastOrder=self.transactionPrice[symbol]# 反马丁格尔加仓模块______________________________________if (self.posDict[symbol+'_LONG']!=0 and self.nPos < 3): # 持有多头仓位并且加仓次数不超过3次if bar.close/lastOrder-1>= self.Ratio: # 计算盈利比例,达到2%self.buy(symbol,bar.close*1.02,self.fixsize*(2**self.nPos)) # 加仓 2手、4手、8手self.nPos += 1 # 加仓次数减少 1 次elif (self.posDict[symbol + "_SHORT"] != 0 and self.nPos < 3): # 持有空头仓位并且加仓次数不超过3次if lastOrder/bar.close-1 >= self.Ratio: # 计算盈利比例,达到2%self.short(symbol,bar.close*0.98,self.fixsize*(2**self.nPos)) # 加仓 2手、4手、8手self.nPos += 1 # 加仓次数减少 1 次# 发出状态更新事件self.putEvent()
"""这里的Demo是一个最简单的双均线策略实现"""from __future__ import divisionfrom vnpy.trader.vtConstant import *from vnpy.trader.app.ctaStrategy.ctaBarManager import CtaTemplateimport numpy as npimport talib as tafrom datetime import timedelta######################################################################### 策略继承CtaTemplateclass DoubleMaStrategy(CtaTemplate):"""双指数均线策略Demo"""className = 'DoubleMaStrategy'author = 'ChannelCMT'# 策略参数barPeriod = 200fastWindow = 60 # 快速均线参数slowWindow = 120 # 慢速均线参数# 参数列表,保存了参数的名称paramList = ['name','className','author','fastWindow','slowWindow']# 变量列表,保存了变量的名称varList = ['barPeriod']nPos = 0fixsize = 2transactionPrice = {}Ratio = 2# 同步列表,保存了需要保存到数据库的变量名称syncList = ['posDict', 'eveningDict']#----------------------------------------------------------------------def __init__(self, ctaEngine, setting):# 首先找到策略的父类(就是类CtaTemplate),然后把DoubleMaStrategy的对象转换为类CtaTemplate的对象super().__init__(ctaEngine, setting)#----------------------------------------------------------------------def onInit(self):"""初始化策略(必须由用户继承实现)"""self.writeCtaLog(u'双EMA演示策略初始化')# 生成Bar数组self.setArrayManagerSize(self.barPeriod)self.transactionPrice = {s: 0 for s in self.symbolList}self.mail("chushihuaaaaaaaaaaaaaaaaaaaaaaaaa")self.putEvent()#----------------------------------------------------------------------def onStart(self):"""启动策略(必须由用户继承实现)"""self.writeCtaLog(u'双EMA演示策略启动')self.putEvent()#----------------------------------------------------------------------def onStop(self):"""停止策略(必须由用户继承实现)"""self.writeCtaLog(u'策略停止')self.putEvent()#----------------------------------------------------------------------def onTick(self, tick):"""收到行情TICK推送(必须由用户继承实现)"""pass#----------------------------------------------------------------------def onBar(self, bar):"""收到Bar推送(必须由用户继承实现)"""symbol = bar.vtSymbollastOrder=self.transactionPrice[symbol]# 马丁格尔加仓模块________________________________________________if (self.posDict[symbol+'_LONG']!=0 and self.nPos < 3): # 持有多头仓位并且加仓次数不超过3次if lastOrder/bar.close-1 >= self.Ratio/100: # 计算亏损比例,达到2%self.buy(symbol,bar.close*1.02,self.fixsize*(2**self.nPos)) # 加仓 2手、4手、8手self.nPos += 1 # 加仓次数减少 1 次elif (self.posDict[symbol + "_SHORT"] != 0 and self.nPos < 3): # 持有空头仓位并且加仓次数不超过3次if bar.close/lastOrder-1 >= self.Ratio/100: # 计算亏损比例,达到2%self.short(symbol,bar.close*0.98,self.fixsize*(2**self.nPos)) # 加仓 2手、4手、8手self.nPos += 1 # 加仓次数减少 1 次# 发出状态更新事件self.putEvent()def on30MinBar(self, bar):"""30分钟K线推送"""symbol = bar.vtSymbolam30 = self.getArrayManager(symbol, "30m")if not am30.inited:return# 计算策略需要的信号-------------------------------------------------fastMa = ta.EMA(am30.close, self.fastWindow)slowMa = ta.EMA(am30.close, self.slowWindow)crossOver = fastMa[-1]>slowMa[-1] and fastMa[-2]<=slowMa[-2] # 金叉上穿crossBelow = fastMa[-1]<slowMa[-1] and fastMa[-2]>=slowMa[-2] # 死叉下穿# 构建进出场逻辑-------------------------------------------------# 金叉和死叉的条件是互斥if crossOver:# 如果金叉时手头没有持仓,则直接做多if (self.posDict[symbol+'_LONG']==0) and (self.posDict[symbol+'_SHORT']==0):self.buy(symbol, bar.close*1.02, self.fixsize)# 如果有空头持仓,则先平空,再做多elif self.posDict[symbol+'_SHORT'] >0:self.cancelAll()self.cover(symbol,bar.close*1.02, self.posDict[symbol+'_SHORT'])self.nPos = 0self.buy(symbol,bar.close*1.02, self.fixsize)# 死叉和金叉相反elif crossBelow :if (self.posDict[symbol+'_LONG']==0) and (self.posDict[symbol+'_SHORT']==0):self.short(symbol,bar.close*0.98, self.fixsize)elif self.posDict[symbol+'_LONG'] >0:self.cancelAll()self.sell(symbol,bar.close*0.98, self.posDict[symbol+'_LONG'])self.nPos = 0self.short(symbol,bar.close*0.98, self.fixsize)# 发出状态更新事件self.putEvent()#----------------------------------------------------------------------def onOrder(self, order):"""收到委托变化推送(必须由用户继承实现)"""# 对于无需做细粒度委托控制的策略,可以忽略onOrder# print(u'出现未知订单,需要策略师外部干预,ID:%s, symbol:%s,direction:%s,offset:%s'% (order.vtOrderID, order.vtSymbol, order.direction, order.offset))pass#----------------------------------------------------------------------def onTrade(self, trade):"""收到成交推送(必须由用户继承实现)"""symbol = trade.vtSymbolself.transactionPrice[symbol] = trade.pricepass#----------------------------------------------------------------------def onStopOrder(self, so):"""停止单推送"""pass
from vnpy.trader.app.ctaStrategy.ctaBarManager import BacktestingEngineimport pandas as pddef runBacktesting(strategyClass, settingDict,startDate, endDate, size, slippage, rate):engine = BacktestingEngine()engine.setBacktestingMode(engine.BAR_MODE)engine.setDatabase('VnTrader_1Min_Db')engine.setStartDate(startDate, initHours=200)engine.setEndDate(endDate)engine.setSize(size)engine.setSlippage(slippage)engine.setRate(rate)engine.initStrategy(strategyClass, settingDict)engine.setCapital(100000)engine.setLog(True, 'E://log//')engine.runBacktesting()#显示逐日回测结果engine.showDailyResult()#显示逐笔回测结果engine.showBacktestingResult()# 计算回测结果perfromance = engine.calculateDailyResult()perfromanceDf , result = engine.calculateDailyStatistics(perfromance)tradeReport = pd.DataFrame([obj.__dict__ for obj in engine.tradeDict.values()])tradeDf = tradeReport.set_index('dt')return perfromanceDf, tradeDfif __name__ == '__main__':# 同时传入信号与执行的数据performanceReport, tradeReport = \runBacktesting(DoubleMaStrategy, {'symbolList': ['BTCUSDT:binance']},'20181001 12:00', '20181031 16:00', 100, 0, 5/10000)# tradeReport.to_excel('BBandMa5MinStrategyReport.xlsx')
2018-11-12 22:20:07.424068 计算按日统计结果
2018-11-12 22:20:07.457049 ------------------------------
2018-11-12 22:20:07.458047 首个交易日: 2018-10-01 00:00:00
2018-11-12 22:20:07.458047 最后交易日: 2018-10-31 00:00:00
2018-11-12 22:20:07.458047 总交易日: 31
2018-11-12 22:20:07.458047 盈利交易日 18
2018-11-12 22:20:07.458047 亏损交易日: 13
2018-11-12 22:20:07.458047 起始资金: 100000
2018-11-12 22:20:07.458047 结束资金: 185,214.85
2018-11-12 22:20:07.458047 总收益率: 85.21%
2018-11-12 22:20:07.458047 年化收益: 659.73%
2018-11-12 22:20:07.458047 总盈亏: 85,214.85
2018-11-12 22:20:07.458047 最大回撤: -70,082.0
2018-11-12 22:20:07.458047 百分比最大回撤: -34.7%
2018-11-12 22:20:07.458047 总手续费: 8,525.15
2018-11-12 22:20:07.458047 总滑点: 0
2018-11-12 22:20:07.459047 总成交金额: 17,050,304.0
2018-11-12 22:20:07.459047 总成交笔数: 13
2018-11-12 22:20:07.459047 日均盈亏: 2,748.87
2018-11-12 22:20:07.459047 日均手续费: 275.0
2018-11-12 22:20:07.459047 日均滑点: 0.0
2018-11-12 22:20:07.459047 日均成交金额: 550,009.81
2018-11-12 22:20:07.459047 日均成交笔数: 0.42
2018-11-12 22:20:07.459047 日均收益率: 2.1%
2018-11-12 22:20:07.459047 收益标准差: 16.66%
2018-11-12 22:20:07.459047 Sharpe Ratio: 1.95
2018-11-12 22:20:08.307526 策略回测绩效图已保存

2018-11-12 22:20:09.105040 计算回测结果
2018-11-12 22:20:09.114033 交割单已生成
2018-11-12 22:20:09.114033 ------------------------------
2018-11-12 22:20:09.114033 第一笔交易: 2018-10-04 22:30:00
2018-11-12 22:20:09.114033 最后一笔交易: 2018-10-31 15:58:00
2018-11-12 22:20:09.114033 总交易次数: 7
2018-11-12 22:20:09.114033 总盈亏: 84,581.45
2018-11-12 22:20:09.114033 最大回撤: -36,412.91
2018-11-12 22:20:09.114033 平均每笔盈利: 12,083.06
2018-11-12 22:20:09.115032 平均每笔滑点: 0.0
2018-11-12 22:20:09.115032 平均每笔佣金: 1,308.36
2018-11-12 22:20:09.115032 胜率 42.86%
2018-11-12 22:20:09.115032 盈利交易平均值 40,331.45
2018-11-12 22:20:09.115032 亏损交易平均值 -9,103.23
2018-11-12 22:20:09.115032 盈亏比: 4.43
2018-11-12 22:20:09.781694 策略回测统计图已保存

2018-11-12 22:20:10.410309 计算按日统计结果
tradeReport