@Channelchan
2018-11-28T09:56:43.000000Z
字数 13691
阅读 61538
from vnpy.trader.app.ctaStrategy import BacktestingEngineimport pandas as pddef runBacktesting(strategyClass, settingDict,startDate, endDate, slippage, rate):engine = BacktestingEngine()engine.setBacktestingMode(engine.BAR_MODE) # 设置引擎的回测模式为K线engine.setDatabase('VnTrader_1Min_Db') # 设置使用的历史数据库engine.setStartDate(startDate, initHours=200) # 设置回测用的数据起始日期engine.setEndDate(endDate) # 设置回测用的数据结束日期engine.setSlippage(slippage) # 设置滑点engine.setRate(rate) # 设置手续费万0.3engine.initStrategy(strategyClass, settingDict)engine.setCapital(100000) # 设置回测本金engine.runBacktesting()#显示逐日回测结果engine.showDailyResult()#显示逐笔回测结果engine.showBacktestingResult()# 计算回测结果df = engine.calculateDailyResult()return df
from vnpy.trader.vtConstant import *from vnpy.trader.app.ctaStrategy import CtaTemplateimport talib as ta######################################################################### 策略继承CtaTemplateclass MultiFrameMaStrategy(CtaTemplate):className = 'MultiFrameMaStrategy'author = 'ChannelCMT'# 策略参数fastPeriod = 20; slowPeriod = 40signalMaPeriod = 20stopRatio = 0.04lot = 1# 策略变量maTrend = {} # 记录趋势状态,多头1,空头-1transactionPrice = {} # 记录成交价格# 参数列表,保存了参数的名称paramList = ['fastPeriod','slowPeriod','signalMaPeriod','stopRatio']# 变量列表,保存了变量的名称varList = ['maTrend','transactionPrice']# 同步列表,保存了需要保存到数据库的变量名称syncList = ['posDict', 'eveningDict']#----------------------------------------------------------------------def __init__(self, ctaEngine, setting):super().__init__(ctaEngine, setting)#----------------------------------------------------------------------def onInit(self):"""初始化策略"""self.writeCtaLog(u'策略初始化')self.transactionPrice = {s:0 for s in self.symbolList} # 生成成交价格的字典self.maTrend = {s:0 for s in self.symbolList}self.putEvent()#----------------------------------------------------------------------def onStart(self):"""启动策略"""self.writeCtaLog(u'策略启动')self.putEvent()#----------------------------------------------------------------------def onStop(self):"""停止策略"""self.writeCtaLog(u'策略停止')self.putEvent()#----------------------------------------------------------------------def onTick(self, tick):"""收到行情TICK推送"""pass#----------------------------------------------------------------------def onBar(self, bar):"""收到Bar推送"""self.onBarStopLoss(bar)def onBarStopLoss(self, bar):symbol = bar.vtSymbol# 计算止损止盈价位longStop = self.transactionPrice[symbol]*(1-self.stopRatio)longProfit = self.transactionPrice[symbol]*(1+3*self.stopRatio)shortStop = self.transactionPrice[symbol]*(1+self.stopRatio)shortProfit = self.transactionPrice[symbol]*(1-3*self.stopRatio)# 洗价器if (self.posDict[symbol+'_LONG'] > 0):if (bar.close < longStop):print('LONG stopLoss')self.cancelAll()self.sell(symbol,bar.close*0.99, self.posDict[symbol+'_LONG'])elif (bar.close > longProfit):print('LONG takeProfit')self.cancelAll()self.sell(symbol,bar.close*0.99, self.posDict[symbol+'_LONG'])elif (self.posDict[symbol+'_SHORT'] > 0):if (bar.close > shortStop):print('SHORT stopLoss')self.cancelAll()self.cover(symbol,bar.close*1.01, self.posDict[symbol+'_SHORT'])elif (bar.close < shortProfit):print('SHORT takeProfit')self.cancelAll()self.cover(symbol,bar.close*1.01, self.posDict[symbol+'_SHORT'])#----------------------------------------------------------------------def on60MinBar(self, bar):"""收到60MinBar推送"""symbol = bar.vtSymbolam60 = self.getArrayManager(symbol, "60m")if not am60.inited:return# 计算均线并判断趋势fastMa = ta.MA(am60.close, self.fastPeriod)slowMa = ta.MA(am60.close, self.slowPeriod)if fastMa[-1] > slowMa[-1]:self.maTrend[symbol] = 1else:self.maTrend[symbol] = -1#----------------------------------------------------------------------def on15MinBar(self, bar):"""收到15MinBar推送"""symbol = bar.vtSymbolam15 = self.getArrayManager(symbol, "15m")if not am15.inited:returnsignalMa = ta.EMA(am15.close, self.signalMaPeriod)maUp = signalMa[-1]>signalMa[-3] # 均线上涨maDn = signalMa[-1]<signalMa[-3] # 均线下跌# 均线上涨, 趋势为多头, 多头没有持仓if maUp and (self.maTrend[symbol]==1) and (self.posDict[symbol+'_LONG']==0):if (self.posDict[symbol+'_SHORT']==0):self.buy(symbol, bar.close*1.01, self.lot) # 成交价*1.01发送高价位的限价单,以最优市价买入进场elif (self.posDict[symbol+'_SHORT'] > 0):self.cancelAll() # 撤销挂单self.cover(symbol, bar.close*1.01, self.posDict[symbol+'_SHORT'])self.buy(symbol, bar.close*1.01, self.lot)# 均线下跌, 趋势为空头, 空头没有持仓if maDn and (self.maTrend[symbol]==-1) and (self.posDict[symbol+'_SHORT']==0):if (self.posDict[symbol+'_LONG']==0):self.short(symbol, bar.close*0.99, self.lot) # 成交价*0.99发送低价位的限价单,以最优市价卖出进场elif (self.posDict[symbol+'_LONG'] > 0):self.cancelAll() # 撤销挂单self.sell(symbol, bar.close*0.99, self.posDict[symbol+'_LONG'])self.short(symbol, bar.close*0.99, self.lot)self.putEvent()#----------------------------------------------------------------------def onOrder(self, order):"""收到委托变化推送(必须由用户继承实现)"""# 对于无需做细粒度委托控制的策略,可以忽略onOrderpass#----------------------------------------------------------------------def onTrade(self, trade):"""收到成交推送(必须由用户继承实现)"""symbol = trade.vtSymbolif trade.offset == OFFSET_OPEN: # 判断成交订单类型self.transactionPrice[symbol] = trade.price # 记录成交价格print(trade.tradeTime, self.posDict)#----------------------------------------------------------------------def onStopOrder(self, so):"""停止单推送"""pass
MultiFrameMaDf = runBacktesting(MultiFrameMaStrategy, {'symbolList':['BTCUSDT:binance']} , '20180901 12:00', \'20181126 12:00', 0.002, 5/10000)
2018-11-27 17:37:04.057980 计算按日统计结果
2018-11-27 17:37:04.080956 ------------------------------
2018-11-27 17:37:04.081955 首个交易日: 2018-09-01 00:00:00
2018-11-27 17:37:04.081955 最后交易日: 2018-11-26 00:00:00
2018-11-27 17:37:04.081955 总交易日: 87
2018-11-27 17:37:04.081955 盈利交易日 45
2018-11-27 17:37:04.081955 亏损交易日: 41
2018-11-27 17:37:04.081955 起始资金: 100000
2018-11-27 17:37:04.081955 结束资金: 101,987.91
2018-11-27 17:37:04.082954 总收益率: 1.99%
2018-11-27 17:37:04.082954 年化收益: 5.48%
2018-11-27 17:37:04.082954 总盈亏: 1,987.91
2018-11-27 17:37:04.082954 最大回撤: -408.37
2018-11-27 17:37:04.082954 百分比最大回撤: -0.41%
2018-11-27 17:37:04.082954 总手续费: 427.34
2018-11-27 17:37:04.082954 总滑点: 0.28
2018-11-27 17:37:04.082954 总成交金额: 854,686.82
2018-11-27 17:37:04.082954 总成交笔数: 139
2018-11-27 17:37:04.082954 日均盈亏: 22.85
2018-11-27 17:37:04.082954 日均手续费: 4.91
2018-11-27 17:37:04.082954 日均滑点: 0.0
2018-11-27 17:37:04.082954 日均成交金额: 9,823.99
2018-11-27 17:37:04.082954 日均成交笔数: 1.6
2018-11-27 17:37:04.082954 日均收益率: 0.02%
2018-11-27 17:37:04.082954 收益标准差: 0.14%
2018-11-27 17:37:04.082954 Sharpe Ratio: 2.3

2018-11-27 17:37:05.468537 计算回测结果
2018-11-27 17:37:05.474531 ------------------------------
2018-11-27 17:37:05.475529 第一笔交易: 2018-09-04 06:45:00
2018-11-27 17:37:05.475529 最后一笔交易: 2018-11-26 11:58:00
2018-11-27 17:37:05.475529 总交易次数: 70
2018-11-27 17:37:05.475529 总盈亏: 1,985.85
2018-11-27 17:37:05.475529 最大回撤: -964.09
2018-11-27 17:37:05.475529 平均每笔盈利: 28.37
2018-11-27 17:37:05.475529 平均每笔滑点: 0.0
2018-11-27 17:37:05.475529 平均每笔佣金: 6.13
2018-11-27 17:37:05.475529 胜率 25.71%
2018-11-27 17:37:05.475529 盈利交易平均值 317.25
2018-11-27 17:37:05.475529 亏损交易平均值 -71.63
2018-11-27 17:37:05.475529 盈亏比: 4.43

2018-11-27 17:37:06.443538 计算按日统计结果
Buy: RSI<30
Sell: RSI>70
from __future__ import divisionfrom vnpy.trader.vtConstant import *from vnpy.trader.app.ctaStrategy import CtaTemplateimport talib as ta######################################################################### 策略继承CtaTemplateclass RsiTrendStrategy(CtaTemplate):className = 'RsiTrendStrategy'author = 'ChannelCMT'# 策略参数fastPeriod = 30; slowPeriod = 60signalMaPeriod = 20stopRatio = 0.03lot = 1# 策略变量maTrend = {} # 记录趋势状态,多头1,空头-1transactionPrice = {} # 记录成交价格# 参数列表,保存了参数的名称paramList = ['fastPeriod', 'slowPeriod','signalMaPeriod','stopRatio']# 变量列表,保存了变量的名称varList = ['maTrend','transactionPrice']# 同步列表,保存了需要保存到数据库的变量名称syncList = ['posDict', 'eveningDict']#----------------------------------------------------------------------def __init__(self, ctaEngine, setting):super().__init__(ctaEngine, setting)#----------------------------------------------------------------------def onInit(self):"""初始化策略"""self.writeCtaLog(u'策略初始化')self.transactionPrice = {s:0 for s in self.symbolList} # 生成成交价格的字典self.maTrend = {s:0 for s in self.symbolList}self.putEvent()#----------------------------------------------------------------------def onStart(self):"""启动策略"""self.writeCtaLog(u'策略启动')self.putEvent()#----------------------------------------------------------------------def onStop(self):"""停止策略"""self.writeCtaLog(u'策略停止')self.putEvent()#----------------------------------------------------------------------def onTick(self, tick):"""收到行情TICK推送"""pass#----------------------------------------------------------------------def onBar(self, bar):"""收到Bar推送"""self.onBarStopLoss(bar)def onBarStopLoss(self, bar):symbol = bar.vtSymbol# 计算止损止盈价位longStop = self.transactionPrice[symbol]*(1-self.stopRatio)longProfit = self.transactionPrice[symbol]*(1+3*self.stopRatio)shortStop = self.transactionPrice[symbol]*(1+self.stopRatio)shortProfit = self.transactionPrice[symbol]*(1-3*self.stopRatio)# 洗价器if (self.posDict[symbol+'_LONG'] > 0):if (bar.close < longStop):self.cancelAll()self.sell(symbol,bar.close*0.99, self.posDict[symbol+'_LONG'])elif (bar.close > longProfit):self.cancelAll()self.sell(symbol,bar.close*0.99, self.posDict[symbol+'_LONG'])elif (self.posDict[symbol+'_SHORT'] > 0):if (bar.close > shortStop):self.cancelAll()self.cover(symbol,bar.close*1.01, self.posDict[symbol+'_SHORT'])elif (bar.close < shortProfit):self.cancelAll()self.cover(symbol,bar.close*1.01, self.posDict[symbol+'_SHORT'])#----------------------------------------------------------------------def on60MinBar(self, bar):"""收到60MinBar推送"""symbol = bar.vtSymbolam60 = self.getArrayManager(symbol, "60m")if not am60.inited:return# 计算均线并判断趋势fastMa = ta.MA(am60.close, self.fastPeriod)slowMa = ta.MA(am60.close, self.slowPeriod)if fastMa[-1] > slowMa[-1]:self.maTrend[symbol] = 1else:self.maTrend[symbol] = -1#----------------------------------------------------------------------def on15MinBar(self, bar):"""收到15MinBar推送"""symbol = bar.vtSymbolam15 = self.getArrayManager(symbol, "15m")if not am15.inited:returnrsi = ta.RSI(am15.close, self.signalMaPeriod)rsiOverbought = (rsi[-1]>70) and (rsi[-2]<=70) # 超买rsiOversold = (rsi[-1]<30) and (rsi[-2]>=30) # 超卖# 均线上涨, 趋势为多头, 多头没有持仓if rsiOversold and (self.maTrend[symbol]==1) and (self.posDict[symbol+'_LONG']==0):if (self.posDict[symbol+'_SHORT']==0):self.buy(symbol, bar.close*1.01, self.lot) # 成交价*1.01发送高价位的限价单,以最优市价买入进场elif (self.posDict[symbol+'_SHORT'] > 0):self.cancelAll() # 撤销挂单self.cover(symbol, bar.close*1.01, self.posDict[symbol+'_SHORT'])self.buy(symbol, bar.close*1.01, self.lot)# 均线下跌, 趋势为空头, 空头没有持仓if rsiOverbought and (self.maTrend[symbol]==-1) and (self.posDict[symbol+'_SHORT']==0):if (self.posDict[symbol+'_LONG']==0):# self.cancelAll() # 撤销挂单self.short(symbol, bar.close*0.99, self.lot) # 成交价*0.99发送低价位的限价单,以最优市价卖出进场elif (self.posDict[symbol+'_LONG'] > 0):self.cancelAll() # 撤销挂单self.sell(symbol, bar.close*0.99, self.posDict[symbol+'_LONG'])self.short(symbol, bar.close*0.99, self.lot)self.putEvent()#----------------------------------------------------------------------def onOrder(self, order):"""收到委托变化推送(必须由用户继承实现)"""# 对于无需做细粒度委托控制的策略,可以忽略onOrderpass#----------------------------------------------------------------------def onTrade(self, trade):"""收到成交推送(必须由用户继承实现)"""symbol = trade.vtSymbolif trade.offset == OFFSET_OPEN: # 判断成交订单类型self.transactionPrice[symbol] = trade.price # 记录成交价格# print(trade.tradeTime, self.posDict)#----------------------------------------------------------------------def onStopOrder(self, so):"""停止单推送"""pass
rsiTrendDf = runBacktesting(RsiTrendStrategy, {'symbolList':['BTCUSDT:binance']} , '20180901 12:00', \'20181126 12:00', 0.002, 5/10000)
2018-11-27 17:37:24.700101 计算按日统计结果
2018-11-27 17:37:24.717082 ------------------------------
2018-11-27 17:37:24.717082 首个交易日: 2018-09-01 00:00:00
2018-11-27 17:37:24.717082 最后交易日: 2018-11-26 00:00:00
2018-11-27 17:37:24.717082 总交易日: 87
2018-11-27 17:37:24.717082 盈利交易日 33
2018-11-27 17:37:24.717082 亏损交易日: 24
2018-11-27 17:37:24.717082 起始资金: 100000
2018-11-27 17:37:24.717082 结束资金: 100,411.64
2018-11-27 17:37:24.717082 总收益率: 0.41%
2018-11-27 17:37:24.717082 年化收益: 1.14%
2018-11-27 17:37:24.717082 总盈亏: 411.64
2018-11-27 17:37:24.717082 最大回撤: -602.46
2018-11-27 17:37:24.717082 百分比最大回撤: -0.6%
2018-11-27 17:37:24.717082 总手续费: 117.45
2018-11-27 17:37:24.717082 总滑点: 0.07
2018-11-27 17:37:24.717082 总成交金额: 234,902.46
2018-11-27 17:37:24.718082 总成交笔数: 37
2018-11-27 17:37:24.718082 日均盈亏: 4.73
2018-11-27 17:37:24.718082 日均手续费: 1.35
2018-11-27 17:37:24.718082 日均滑点: 0.0
2018-11-27 17:37:24.718082 日均成交金额: 2,700.03
2018-11-27 17:37:24.718082 日均成交笔数: 0.43
2018-11-27 17:37:24.718082 日均收益率: 0.0%
2018-11-27 17:37:24.718082 收益标准差: 0.09%
2018-11-27 17:37:24.718082 Sharpe Ratio: 0.8

2018-11-27 17:37:26.076690 计算回测结果
2018-11-27 17:37:26.078689 ------------------------------
2018-11-27 17:37:26.078689 第一笔交易: 2018-09-06 00:51:00
2018-11-27 17:37:26.078689 最后一笔交易: 2018-11-26 11:58:00
2018-11-27 17:37:26.078689 总交易次数: 19
2018-11-27 17:37:26.078689 总盈亏: 409.58
2018-11-27 17:37:26.078689 最大回撤: -597.16
2018-11-27 17:37:26.078689 平均每笔盈利: 21.56
2018-11-27 17:37:26.078689 平均每笔滑点: 0.0
2018-11-27 17:37:26.078689 平均每笔佣金: 6.29
2018-11-27 17:37:26.078689 胜率 63.16%
2018-11-27 17:37:26.078689 盈利交易平均值 138.08
2018-11-27 17:37:26.078689 亏损交易平均值 -178.19
2018-11-27 17:37:26.078689 盈亏比: 0.77

2018-11-27 17:37:26.712041 计算按日统计结果
MultiFrameMaDf.tail()
rsiTrendDf.tail()
PortfolioDf = MultiFrameMaDf+rsiTrendDf
PortfolioDf = PortfolioDf.dropna()# 创建回测引擎,并设置组合回测初始资金后,显示结果engine = BacktestingEngine()engine.setCapital(1000000)dfp, result = engine.calculateDailyStatistics(PortfolioDf)
result
{'annualizedReturn': 0.6619457544827818,
'dailyCommission': 6.262007356321838,
'dailyNetPnl': 27.581073103448254,
'dailyReturn': 0.0026295448011353366,
'dailySlippage': 0.004045977011494256,
'dailyTradeCount': 2.0229885057471266,
'dailyTurnover': 12524.014712643675,
'endBalance': 1002399.55336,
'endDate': Timestamp('2018-11-26 00:00:00'),
'lossDays': 30,
'maxDdPercent': -0.05138439214392886,
'maxDrawdown': -514.0053199999966,
'profitDays': 46,
'returnStd': 0.015721744941956703,
'sharpeRatio': 2.5911076055495266,
'startDate': Timestamp('2018-09-01 00:00:00'),
'totalCommission': 544.79464,
'totalDays': 87,
'totalNetPnl': 2399.553359999998,
'totalReturn': 0.2399553360000084,
'totalSlippage': 0.35200000000000026,
'totalTradeCount': 176,
'totalTurnover': 1089589.2799999998}
import matplotlib.pyplot as pltplt.figure(figsize=(15, 7))plt.plot(PortfolioDf['netPnl'].cumsum())plt.show()
