@Channelchan
2017-07-08T07:14:55.000000Z
字数 929
阅读 25344
Python的机器学习库,用于数据挖掘和数据分析的简单而有效的工具。
from sklearn.linear_model import Lassomodel_Lasso = Lasso(alpha=0.1)X = [[-1,-1], [0,0], [1,1]]y = [-1,0,1]model_Lasso.fit(X,y)
from sklearn.svm import SVCimport numpy as npX = np.array([[-3,-2],[-4,-5],[3,4],[4,5]])y = np.array([1, 1, 2, 2])model_SVC = SVC()model_SVC.fit(X, y)
Rolling 计算Regression
from sklearn import linear_modelfrom sklearn.metrics import r2_scorereg = linear_model.Lasso(alpha=1)result = result.dropna()# print resulty = result.HS300_close.valuestarget = result[["ADP_MAS", "HLP_MAS", "MAP_MAS", 'VOL_MAS']]data = map(lambda row: list(row[1]), target.iterrows())residual=[]for i in range(0, len(data)-100, 1):X = data[i:100+i]# print len(X)YY = y[i:100+i]reg.fit(X, YY)print reg.score(X, YY)rsd = YY - reg.predict(X)residual.append(rsd[-1])res = pd.Series(residual, index=result.index[100:])
官方文档: http://scikit-learn.org/
