@JudyYe
2016-06-13T10:17:13.000000Z
字数 1230
阅读 346
机器学习
叶雨菲 计32 2013011325
5.4
要求
Compare results on 5% & 100% training set respectively
5% | 100% |
---|---|
82.82 | 83.2 |
82.89 | 83.18 |
82.51 | 83.13 |
82.46 | 83.09 |
82.73 | 83.08 |
82.66 | 83.09 |
82.6 | 83.09 |
82.73 | 83.09 |
82.67 | 83.09 |
82.76 | 83.1 |
82.75 | 83.08 |
82.73 | 83.07 |
82.72 | 83.06 |
82.67 | 83.06 |
82.69 | 83.05 |
82.77 | 83.06 |
82.73 | 83.06 |
82.7 | 83.07 |
82.75 | 83.06 |
82.71 | 83.07 |
82.71 | 83.07 |
82.72 | 83.07 |
82.75 | 83.08 |
82.78 | 83.08 |
82.81 | 83.08 |
82.84 | 83.08 |
82.82 | 83.08 |
82.83 | 83.08 |
82.66 | 83.08 |
82.77 | 83.08 |
得到30组数据,计算期望和标准差,得:
分别估计和置信区间
我全部使置信区间为two-side 95%
对于5%
对于100%
2
when algorithm A is better than B
其中
服从的高斯分布
所以说,在我的Naive Bayse classification中,取数据集取100% 的算法几乎100%肯定的比取训练集为5%的要好