[关闭]
@hanxiaoyang 2016-07-22T16:38:46.000000Z 字数 10028 阅读 4032

斯坦福CS231n学习笔记_(7)_神经网络数据预处理,正则化与损失函数

CS231n


作者:寒小阳
时间:2016年1月。
出处:http://blog.csdn.net/han_xiaoyang/article/details/50451460
声明:版权所有,转载请联系作者并注明出处

1. 引言

上一节我们讲完了各种激励函数的优缺点和选择,以及网络的大小以及正则化对神经网络的影响。这一节我们讲一讲输入数据预处理、正则化以及损失函数设定的一些事情。

2. 数据与网络的设定

前一节提到前向计算涉及到的组件(主要是神经元)设定。神经网络结构和参数设定完毕之后,我们就得到得分函数/score function(忘记的同学们可以翻看一下之前的博文),总体说来,一个完整的神经网络就是在不断地进行线性映射(权重和input的内积)和非线性映射(部分激励函数作用)的过程。这一节我们会展开来讲讲数据预处理权重初始化损失函数的事情。

2.1 数据预处理

在卷积神经网处理图像问题的时候,图像数据有3种常见的预处理可能会用到,如下。我们假定数据表示成矩阵为X,其中我们假定X是[N*D]维矩阵(N是样本数据量,D为单张图片的数据向量长度)。

上述两个操作对于数据的作用,画成示意图,如下:
数据的去均值与归一化

  1. # 假定输入数据矩阵X是[N*D]维的
  2. X -= np.mean(X, axis = 0) # 去均值
  3. cov = np.dot(X.T, X) / X.shape[0] # 计算协方差

得到的结果矩阵中元素(i,j)表示原始数据中,第i维和第j维之间的相关性。有意思的是,其实协方差矩阵的对角线包含了每个维度的变化幅度。另外,我们都知道协方差矩阵是对称的,我们可以在其上做矩阵奇异值分解(SVD factorization):

  1. U,S,V = np.linalg.svd(cov)

其中U为特征向量,我们如果相对原始数据(去均值之后)做去相关操作,只需要进行如下运算:

  1. Xrot = np.dot(X, U)

这么理解一下可能更好,U是一组正交基向量。所以我们可以看做把原始数据X投射到这组维度保持不变的正交基底上,从而也就完成了对原始数据的去相关。如果去相关之后你再求一下Xrot的协方差矩阵,你会发现这时候的协方差矩阵是一个对角矩阵了。而numpy中的np.linalg.svd更好的一个特性是,它返回的U是对特征值排序过的,这也就意味着,我们可以用它进行降维操作。我们可以只取top的一些特征向量,然后做和原始数据做矩阵乘法,这个时候既降维减少了计算量,同时又保存下了绝大多数的原始数据信息,这就是所谓的主成分分析/PCA

  1. Xrot_reduced = np.dot(X, U[:,:100])

这个操作之后,我们把原始数据集矩阵从[N*D]降维到[N*100],保存了前100个能包含绝大多数数据信息的维度。实际应用中,你在PCA降维之后的数据集上,做各种机器学习的训练,在节省空间和时间的前提下,依旧能有很好的训练准确度。

最后我们再提一下whitening操作。所谓whitening,就是把各个特征轴上的数据除以对应特征值,从而达到在每个特征轴上都归一化幅度的结果。whitening变换的几何意义和理解是,如果输入的数据是多变量高斯,那whitening之后的 数据是一个均值为0而不同方差的高斯矩阵。这一步简单代码实现如下:

  1. #白化数据
  2. Xwhite = Xrot / np.sqrt(S + 1e-5)

提个醒:whitening操作会有严重化噪声的可能。注意到我们在上述代码中,分母的部分加入了一个很小的数1e-5,以防止出现除以0的情况。但是数据中的噪声部分可能会因whitening操作而变大,因为这个操作的本质是把输入的每个维度都拉到差不多的幅度,那么本不相关的有微弱幅度变化的噪声维度,也被拉到了和其他维度同样的幅度。当然,我们适当提高分母中的安全因子(1e-5)可以在一定程度上缓解这个问题。

下图为原始数据到去相关白化之后的数据分布示意图:
去相关与白化

我们来看看真实数据集上的操作与得到的结果,也许能对这些过程有更清晰一些的认识。大家都还记得CIFAR-10图像数据集吧。训练集大小为50000*3072,也就是说,每张图片都被展成一个3072维度的列向量了。然后我们对原始50000*3072数据矩阵做SVD分解,进行上述一些操作,再可视化一下,得到的结果示意图如下:

CIFAR-10降维与可视化

我们稍加解释一下,最左边是49张原始图片;左起第2幅图是最3072个特征向量中最top的144个,这144个特征向量包含了绝大多数数据变量信息,而其实它们代表的是图片中低频的信息;左起第3幅图表示PCA降维操作之后的49张图片,使用上面求得的144个特征向量。我们可以观察到图片好像被蒙上了一层东西一样,模糊化了,这也就表明了我们的top144个特征向量捕捉到的都是图像的低频信息,不过我们发现图像的绝大多数信息确实被保留下来了;最右图是whitening的144个数通过乘以U.transpose()[:144,:]还原回图片的样子,有趣的是,我们发现,现在低频信息基本都被滤掉了,剩下一些高频信息被放大呈现。

实际工程中,因为这个部分讲到数据预处理,我们就把基本的几种数据预处理都讲了一遍,但实际卷积神经网中,我们并没有用到去相关和whitening操作。当然,去均值是非常非常重要的,而每个像素维度的归一化也是常用的操作。

特别说明,需要特别说明的一点是,上述的预处理操作,一定都是在训练集上先预算的,然后应用在交叉验证/测试集上的。举个例子,有些同学会先把所有的图片放一起,求均值,然后减掉均值,再把这份数据分作训练集和测试集,这是不对的亲!!!

2.2 权重初始化

我们之前已经看过一个完整的神经网络,是怎么样通过神经元和连接搭建起来的,以及如何对数据做预处理。在训练神经网络之前,我们还有一个任务要做,那就是初始化参数。

错误的想法:全部初始化为0,有些同学说,那既然要训练和收敛嘛,初始值就随便设定,简单一点就全设为0好了。亲,这样是绝对不行的!!!为啥呢?我们在神经网络训练完成之前,是不可能预知神经网络最后的权重具体结果的,但是根据我们归一化后的数据,我们可以假定,大概有半数左右的权重是正数,而另外的半数是负数。但设定全部初始权重都为0的结果是,网络中每个神经元都计算出一样的结果,然后在反向传播中有一样的梯度结果,因此迭代之后的变化情况也都一样,这意味着这个神经网络的权重没有办法差异化,也就没有办法学习到东西。

很小的随机数,其实我们依旧希望初始的权重是较小的数,趋于0,但是就像我们刚刚讨论过的一样,不要真的是0。综合上述想法,在实际场景中,我们通常会把初始权重设定为非常小的数字,然后正负尽量一半一半。这样,初始的时候权重都是不一样的很小随机数,然后迭代过程中不会再出现迭代一致的情况。举个例子,我们可能可以这样初始化一个权重矩阵W=0.0001*np.random.randn(D,H)。这个初始化的过程,使得每个神经元的权重向量初始化为多维高斯中的随机采样向量,所以神经元的初始权重值指向空间中的随机方向。

特别说明:其实不一定更小的初始值会比大值有更好的效果。我们这么想,一个有着非常小的权重的神经网络在后向传播过程中,回传的梯度也是非常小的。这样回传的"信号"流会相对也较弱,对于层数非常多的深度神经网络,这也是一个问题,回传到最前的迭代梯度已经很小了。

方差归一化,上面提到的建议有一个小问题,对于随机初始化的神经元参数下的输出,其分布的方差随着输入的数量,会增长。我们实际上可以通过除以总输入数目的平方根,归一化每个神经元的输出方差到1。也就是说,我们倾向于初始化神经元的权重向量为w = np.random.randn(n) / sqrt(n),其中n为输入数。

我们从数学的角度,简单解释一下,为什么上述操作可以归一化方差。考虑在激励函数之前的权重w与输入x的内积部分,我们计算一下的方差:

注意,这个推导的前2步用到了方差的性质。第3步我们假定输入均值为0,因此。不过这是我们的一个假设,实际情况下并不一定是这样的,比如ReLU单元的均值就是正的。最后一步我们假定是独立分布。我们想让s的方差和输入x的方差一致,因此我们想让w的方差取值为1/n,又因为我们有公式,所以a应该取值为,numpy里的实现为w = np.random.randn(n) / sqrt(n)

对于初始化权重还有一些类似的研究和建议,比如说Glorot在论文Understanding the difficulty of training deep feedforward neural networks就推荐使用能满足的权重初始化。其中是前一层和后一层的神经元个数。而另外一篇比较新的论文Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification,则指出尤其对于ReLU神经元,我们初始化方差应该为2.0/n,也就是w = np.random.randn(n) * sqrt(2.0/n)目前的神经网络中使用了很多ReLU单元,因此这个设定其实在实际应用中使用最多。

偏移量/bias初始化:相对而言,bias项初始化就简单一些。我们很多时候简单起见,直接就把它们都设为0.在ReLU单元中,有些同学会使用很小的数字(比如0.01)来代替0作为所有bias项的初始值,他们解释说这样也能保证ReLU单元一开始就是被激活的,因此反向传播过程中不会终止掉回传的梯度。不过似乎实际的实验过程中,这个优化并不是每次都能起到作用的,因此很多时候我们还是直接把bias项都初始化为0。

2.3 正则化

在前一节里我们说了我们要通过正则化来控制神经网络,使得它不那么容易过拟合。有几种正则化的类型供选择:

下图是一个3层的神经网络的dropout示意图:


Dropout示意图

简单的Dropout代码如下(这是简易实现版本,但是不建议使用,我们会分析为啥,并在之后给出优化版):

  1. p = 0.5 # 设定dropout的概率,也就是保持一个神经元激活状态的概率
  2. def train_step(X):
  3. """ X contains the data """
  4. # 3层神经网络前向计算
  5. H1 = np.maximum(0, np.dot(W1, X) + b1)
  6. U1 = np.random.rand(*H1.shape) < p # 第一次Dropout
  7. H1 *= U1 # drop!
  8. H2 = np.maximum(0, np.dot(W2, H1) + b2)
  9. U2 = np.random.rand(*H2.shape) < p # 第二次Dropout
  10. H2 *= U2 # drop!
  11. out = np.dot(W3, H2) + b3
  12. # 反向传播: 计算梯度... (这里省略)
  13. # 参数更新... (这里省略)
  14. def predict(X):
  15. # 加上Dropout之后的前向计算
  16. H1 = np.maximum(0, np.dot(W1, X) + b1) * p
  17. H2 = np.maximum(0, np.dot(W2, H1) + b2) * p
  18. out = np.dot(W3, H2) + b3

上述代码中,在train_step函数中,我们做了2次Dropout。我们甚至可以在输入层做一次dropout。反向传播过程保持不变,除了我们要考虑一下U1,U2

很重要的一点是,大家仔细看predict函数部分,我们不再dropout了,而是对于每个隐层的输出,都用概率p做了一个幅度变换。可以从数学期望的角度去理解这个做法,我们考虑一个神经元的输出为x(没有dropout的情况下),它的输出的数学期望为,那我们在测试阶段,如果直接把每个输出x都做变换,其实是可以保持一样的数学期望的。

上述代码的写法有一些缺陷,我们必须在测试阶段对每个神经的输出都以p的概率输出。考虑到实际应用中,测试阶段对于时间的要求非常高,我们可以考虑反着来,代码实现的时候用inverted dropout,即在训练阶段就做相反的幅度变换/scaling(除以p),这样在测试阶段,我们可以直接把权重拿来使用,而不用附加很多步用p做scaling的过程。inverted dropout的示例代码如下:

  1. """
  2. Inverted Dropout的版本,把本该花在测试阶段的时间,转移到训练阶段,从而提高testing部分的速度
  3. """
  4. p = 0.5 # dropout的概率,也就是保持一个神经元激活状态的概率
  5. def train_step(X):
  6. # f3层神经网络前向计算
  7. H1 = np.maximum(0, np.dot(W1, X) + b1)
  8. U1 = (np.random.rand(*H1.shape) < p) / p # 注意到这个dropout中我们除以p,做了一个inverted dropout
  9. H1 *= U1 # drop!
  10. H2 = np.maximum(0, np.dot(W2, H1) + b2)
  11. U2 = (np.random.rand(*H2.shape) < p) / p # 这个dropout中我们除以p,做了一个inverted dropout
  12. H2 *= U2 # drop!
  13. out = np.dot(W3, H2) + b3
  14. # 反向传播: 计算梯度... (这里省略)
  15. # 参数更新... (这里省略)
  16. def predict(X):
  17. # 直接前向计算,无需再乘以p
  18. H1 = np.maximum(0, np.dot(W1, X) + b1)
  19. H2 = np.maximum(0, np.dot(W2, H1) + b2)
  20. out = np.dot(W3, H2) + b3

对于dropout这个部分如果你有更深的兴趣,欢迎阅读以下文献:
1) 2014 Srivastava 的论文Dropout paper
2) Dropout Training as Adaptive Regularization

实际应用中:我们最常见到的是,在全部的交叉验证集上使用L2正则化,同时我们在每一层之后用dropout,很常见的dropout概率为p=0.5,你也可以通过交叉验证去调整这个值。

2.4 损失函数

刚才讨论了数据预处理、权重初始化与正则化相关的问题。现在我们回到训练需要的关键之一:损失函数。对于这么复杂的神经网络,我们也得有一个评估准则去评估预测值和真实结果之间的吻合度,也就是损失函数。神经网络里的损失函数,实际上是计算出了每个样本上的loss,再求平均之后的一个形式,即,其中N是训练样本数。

2.4.1 分类问题

另外一个是Softmax分类器中用到的互熵损失:

其中的求和是针对有所的类别j,而是1或者-1(取决于第i个样本是否有第j个属性的标签),打分向量在类别/标签被预测到的情况下为正,其他情况为负。注意到如果正样本有比+1小的得分,或者负样本有比-1大的得分,那么损失/loss就一直在累积。

另外一个也许有效的解决办法是,我们可以对每个属性,都单独训练一个逻辑回归分类器,一个二分类的逻辑回归分类器只有0,1两个类别,属于1的概率为:

又因为0,1两类的概率和为1,所以归属于类别0的概率为。一个样本在的情况下被判定为1,对应sigmoid函数化简一下,对应的是得分。这时候的损失函数可以定义为最大化似然概率的形式,也就是:

其中标签为1(正样本)或者0(负样本),而是sigmoid函数。

2.4.2 回归问题

回归是另外一类机器学习问题,主要用于预测连续值属性,比如房子的价格或者图像中某些东西的长度等。对于回归问题,我们一般计算预测值和实际值之间的差值,然后再求L2范数或者L1范数用于衡量。其中对一个样本(一张图片)计算的L2范数损失为:

而L1范数损失函数是如下的形式:

注意

如果我们遇到回归问题,首先要想想,是否完全没有可能把结果离散化之后,把这个问题转化成一个分类问题。

3. 总结

总结一下:

参考资料与原文

cs231n 神经网络数据预处理正则化与损失函数

添加新批注
在作者公开此批注前,只有你和作者可见。
回复批注