@hanxiaoyang
2016-10-25T16:02:14.000000Z
字数 1373
阅读 6810
机器学习
from sklearn.svm import LinearSVCfrom sklearn.learning_curve import learning_curve#绘制学习曲线,以确定模型的状况def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None,train_sizes=np.linspace(.1, 1.0, 5)):"""画出data在某模型上的learning curve.参数解释----------estimator : 你用的分类器。title : 表格的标题。X : 输入的feature,numpy类型y : 输入的target vectorylim : tuple格式的(ymin, ymax), 设定图像中纵坐标的最低点和最高点cv : 做cross-validation的时候,数据分成的份数,其中一份作为cv集,其余n-1份作为training(默认为3份)"""plt.figure()train_sizes, train_scores, test_scores = learning_curve(estimator, X, y, cv=5, n_jobs=1, train_sizes=train_sizes)train_scores_mean = np.mean(train_scores, axis=1)train_scores_std = np.std(train_scores, axis=1)test_scores_mean = np.mean(test_scores, axis=1)test_scores_std = np.std(test_scores, axis=1)plt.fill_between(train_sizes, train_scores_mean - train_scores_std,train_scores_mean + train_scores_std, alpha=0.1,color="r")plt.fill_between(train_sizes, test_scores_mean - test_scores_std,test_scores_mean + test_scores_std, alpha=0.1, color="g")plt.plot(train_sizes, train_scores_mean, 'o-', color="r",label="Training score")plt.plot(train_sizes, test_scores_mean, 'o-', color="g",label="Cross-validation score")plt.xlabel("Training examples")plt.ylabel("Score")plt.legend(loc="best")plt.grid("on")if ylim:plt.ylim(ylim)plt.title(title)plt.show()#少样本的情况情况下绘出学习曲线plot_learning_curve(LinearSVC(C=10.0), "LinearSVC(C=10.0)",X, y, ylim=(0.8, 1.01),train_sizes=np.linspace(.05, 0.2, 5))