[关闭]
@Guozhongzhi 2016-11-13T16:37:25.000000Z 字数 1565 阅读 628

第八次作业

计算物理 郭忠智2014301020087


【摘要】 本次作业完成了课本中3.18题的画图,为了寻找单摆的混沌现象的产生机制,我们将驱动力的大小列入考虑范围之内,观察随着驱动力的变化,单摆的运动会随之发生的变化,采用vpython画出了单摆的摆动的三维图形,以及画出的关系图,这样,我们能很清楚地看到,随着驱动力的大小变化,会出现多个值,而这多个值,对应着摆的运动周期变为驱动力周期的n倍,这是混沌现象的一种形成方式。

1 背景

Problem3.18
Caculate Poincare sections for the pendulum as it undergoes the period_-doubling route to chaos.Do this for ,using the other parameters as given in connection with Figure3.10.

2 正文

(一)选择参数,这里我们选择的参数和第七次作业中给出的参数一致,仅让变化,观察随之变化。
(二)程序模拟
用python和vpython编写代码,运行,结果如下:

  1. from visual import*
  2. from math import *
  3. #设置参数值
  4. L = 9.8
  5. r = 1
  6. t = 0
  7. dt = 0.04
  8. g = 9.8
  9. omiga = 0
  10. q = 0.5
  11. F_D = 1.4 #1.44,1.465
  12. theta = 0.2
  13. #画图所需元件的规格设定
  14. scene.height, scene.width, scene.center = 1000, 1000, (0, -10, 0)
  15. bracket = box(pos = (0,0.6*(-L-r),-2.5), length = 1, width = 0.5,
  16. height = 15,\
  17. material = materials.wood, color = color.yellow)
  18. seat = box(pos = bracket.pos - (0,bracket.height / 2.0, 0), \
  19. length = 12, width = 6, height = 1, \
  20. material = materials.marble, color = (200,256,256))
  21. cylinder(pos = (0,0,0.5), axis = (0,0,-3), radius = 0.3)
  22. f = frame()
  23. ball = sphere(frame = f, pos = (L*sin(theta), -L*cos(theta),0), \
  24. radius = r, material = materials.earth, color = color.white)
  25. rope = cylinder(frame = f, pos = (0,0,0), axis = ball.pos, \
  26. radius = 0.2, material = materials.rough, \
  27. color = (0.5, 0.0, 0.5))
  28. while True:
  29. rate(25)
  30. theta = theta + omiga * dt
  31. f.rotate(origin = (0,0,0),axis = (0,0,1),angle = omiga * dt)
  32. t = t + dt
  33. omiga = omiga - (math.sin(theta) + q * omiga - F_D * \
  34. math.sin(2.0/3 * t)) * dt

(1)
3-180
(2)
3-181
(3)
3-182

(三)Poincare sections
(1)
3-1800
(2)
3-1810
(3)
3-1820
继续增大,会得到更多的分散点,表明通过周期加倍,发生混沌
3-184

4 结论

从以上计算和展示,我们可以看到单摆从简谐运动走向混沌的过程,其方式可以归纳为:周期加倍,即随着驱动力的变化运动的周期会变成驱动力的倍,这是混沌现象的形成方式之一。

5 致谢

十分感谢杨宗蒙同学的耐心指导,和他的代码参考。

添加新批注
在作者公开此批注前,只有你和作者可见。
回复批注