[关闭]
@Lucien 2018-02-01T10:18:45.000000Z 字数 1020 阅读 535

Machine Learning in Security and Integrity

Bin Xu:Facebook 软件工程经理

徐斌目前在Facebook带领Business Integrity的机器学习团队和机器平台架构团队,主要任务是确保Facebook的用户和Facebook上所有商业业务之间的诚信沟通。这些商业业务存在于广告、市场、社团/群组、粉丝专页等等。在进入Facebook前,徐斌在Microsoft担任首席机器学习工程经理,带领技术团队开发云安全解决方案,实现对异常现象的检测,并保护客户在云中的身份、数据和应用的安全。再此前,徐斌在Amazon工作10年,率领多个应用科学家团队处理交易风险管理工作。

徐斌在美国纽约州立大学石溪分校获得计算机科学硕士学位和统计学博士学位。

演讲题目:机器学习技术在安全性和完整性方面的探索

演讲摘要:随着电子商务如Taobao, Amazon的崛起,云计算如AliCloud, AWS, Azure的爆发,以及社交网络如WeChat, Facebook的大面积普及化,使得商业业务创新和开展越来越容易,轻而易举使用大规模资源和服务,全球化信息互动和共享已经可以同步,总的来说世界正在变得越来越小。但是,信息安全和商业诚信问题却不断增加,面对每天超过PB级的不平衡和模糊大数据,实时机器学习和解决方案面临着巨大的挑战。这样的要求在各个领域越来越多,促发了许多突破性的研究成果和应用。

演讲过程中会快速浏览一些安全问题,然后讲述一下机器学习平台,重点讲解能够处理当下棘手问题的相关先进技术和解决方案,以及一些真实的应用效果。最后会分享几个最近机器学习在安全应用上的特别案例。

演讲提纲

  1. 总览几个电商、云计算和社交网络出现的安全问题
    a. 交易欺诈和滥用
    b. 云计算安全
    c. 广告及其他商业诚信
  2. 机器学习平台和架构
    a. 离线构建,在线部署,反馈机制
    b. 数据和特征工程
    c. 平行 v.s 垂直模型结构
    d. 传统分类 v.s 深度学习
  3. 挑战和切身教训
    a. 非平衡数据
    b. 处理模糊性:半标签和无标签
    c. 冷启动问题
  4. 应用 1: 机器学习在交易风险管理方面的实践
  5. 应用 2: 机器学习在云安全方面的实践

听众受益点

讲师希望分享他十余年在IT界高端的几个公司里的宝贵经验。这些经验来自于对实时海量数据的机器学习及解决方案,成功和经验。

  1. 整体了解机器学习平台和构架,尤其是在安全诚信领域中。
  2. 通过分享的这两个应用,参会者能够进一步学习实时系统是如何使用先进的机器学习处理大规模数据。
添加新批注
在作者公开此批注前,只有你和作者可见。
回复批注