[关闭]
@mShuaiZhao 2018-03-20T02:37:17.000000Z 字数 2814 阅读 381

Statistics with R Part02Week03

Coursera 2018.03


t-distribution and comparing two means

1. introduction

说真的没啥写的。

2. t-distribution

3. Inference for a mean

4. inference for comparing two indepenedent means

和上面一样的题目。

QQ图片20180315191053.png-525.8kB

df和standard error的算法都有不同。

5. inference for comparing two paired means

In this video, we discuss how our methodology should change if the means we're comparing are paired, in other words, dependent.

6. Power

ANOVA and bootstrapping

1. comparing more than two means

image_1c8n7ia5l18815qm1km3keqd843.png-786.2kB

image_1c8n7jhvv18es60n1k3a141bd1u4g.png-817.6kB

image_1c8n7mabv1v231vm11i6115bi16hn4t.png-626kB

image_1c8n8106krlg1l6l5j716g1ts95a.png-617.6kB

image_1c8n826k5491hia1diu13av1qnt5n.png-728.5kB

image_1c8n83og0fbdf90556l14isk64.png-627.8kB

image_1c8n854jenrq107u1ur716hc130i6h.png-773.3kB

image_1c8n867gukdv1c281iuq1akomui6u.png-846.3kB

2. ANOVA

3. conditions for anova

使用ANOVA的一些条件

QQ图片20180317231712.png-252kB

QQ图片20180317231848.png-690.8kB

QQ图片20180317232342.png-737.2kB

QQ图片20180317232417.png-686.9kB
同方差的

4. multiple comparisons

image_1c8qa3cc915al1enjdfdba5o3s4p.png-549.9kB

Remember that to determine whether two means are different from each other, we use t tests. And with each test that you do, you incur a probability of doing a Type I error. The probability of committing a Type I error is the significance level of the test, which is often set to 5%. So when you do multiple tests, you're going to be inflating your Type I error rate, which is an undesirable outcome. Thankfully, there is a simple solution. Use a modified significance level that is lower than the original significance level for these pairwise tests, so that the overall Type I error rate for the series of tests you have to do can still be held at the original low rate.

多次作检验,会增加type 1 error发生的概率,或的关系吗?
每一对都可能会发生type 1 error,多次作检验,最后发生type 1 error的概率是与所有对发生type 1 error的概率之和正相关的。

image_1c8qaopvemgk103b12621slf139v56.png-559.2kB

image_1c8qat1rhpd71a239f12js1c085j.png-448.6kB

image_1c8qavgo11pksa5j1t69tftqjr60.png-580.5kB

image_1c8qb03viocb1ru31e8cksco8g6d.png-436.9kB

image_1c8qb0hv33k21shk1562103c1nqk6q.png-781.4kB

image_1c8qb0u8qjpp1hapvjn5rdd177.png-657.4kB

5. Bootstrapping

image_1c8recl9r1n431plpf4livd1h7e9.png-719.3kB

不满足CLT的条件,不可以使用。

There is a typo in the video: t* should be 1.73 (based on df = 20 - 1 = 19), and hence the interval should be (732, 1042). This correction also affects the next slide where the intervals are drawn on the bootstrap distribution.

添加新批注
在作者公开此批注前,只有你和作者可见。
回复批注