[关闭]
@mShuaiZhao
2017-11-25T02:03:35.000000Z
字数
1135
阅读
365
CNN Cases
CNN
2017.11
VGG
VGG-16的参数个数
ReLU activation function is not shown for brevity.
最后的结果为138millions,和论文中给出的数据相当。
在conv layer不改变feature map的情况下,所有的maxpool layer(窗口大小和步长如上所述)总共会将图像宽高缩减到原来的
。
内容目录
2017.10
1
backpropagation
2017.11
11
SSD
Week04. Feasibility of Learning
Week03. Types of Learning
Week02. Learning to Answer Yes/No
Week01. Course Introduction
SegLink
CNN Cases
Chapter 3
The Derivation of Softmax
Matrix Inverse identities
Data mining
2017.12
12
week04.Ng's CNN Course
YOLO9000: Better, Faster, Stronger
Gradient-Based Learning Applied to Document Recognition
YOLO
week03.Ng's CNN Course
week01.Ng's CNN Course
ResNet
week02.Ng's CNN Course
Convolutional Neural Networks
FCN
Week06. Theory of Generalization
Matrix Differentiation
2018.01
13
Week04. Statistics with R Part01
EAST
Week03. Statistics with R Part01
Week02. Statistics with R Part01
Statistics with R Part01Week01
week01.Ng's CNN Course Homework
Visualizing and Understanding Convolutional Networks
Multi-Oriented Text Detection with Fully Convolutional Networks
计算机体系结构论文阅读
计算机组成_北京大学06周流水线处理器
计算机组成_北京大学05周单周期处理器
计算机组成_北京大学01周计算机基本结构
计算机组成_北京大学02周_ISA
2018.02
8
week03.Ng's Sequence Model Course-Homework
Week01. Statistics with R Part02
week03.Ng's Sequence Model Course
week02.Ng's Sequence Model Course-Homework
week02.Ng's Sequence Model Course
week01.Ng's Sequence Model Course Homework-1
Light-Head R-CNN
week01.Ng's Sequence Model Course
2018.03
4
Convex Optimization 02
Re-implement:SEE
Statistics with R Part02Week03
The Unix Workbench Week02
CNN
6
backpropagation
Gradient-Based Learning Applied to Document Recognition
《deeplearning.ai》 CNN backpropagation
Convolutional Neural Networks
CNN Cases
The Derivation of Softmax
ComputerArchitecture
5
计算机体系结构论文阅读
计算机组成_北京大学06周流水线处理器
计算机组成_北京大学05周单周期处理器
计算机组成_北京大学01周计算机基本结构
计算机组成_北京大学02周_ISA
Coursera
28
Convex Optimization 02
Statistics with R Part02Week03
The Unix Workbench Week02
week03.Ng's Sequence Model Course-Homework
Week01. Statistics with R Part02
week03.Ng's Sequence Model Course
week02.Ng's Sequence Model Course-Homework
week02.Ng's Sequence Model Course
week01.Ng's Sequence Model Course Homework-1
week01.Ng's Sequence Model Course
Week04. Statistics with R Part01
Week03. Statistics with R Part01
Week02. Statistics with R Part01
Statistics with R Part01Week01
week01.Ng's CNN Course Homework
计算机组成_北京大学06周流水线处理器
计算机组成_北京大学05周单周期处理器
计算机组成_北京大学01周计算机基本结构
计算机组成_北京大学02周_ISA
week04.Ng's CNN Course
week03.Ng's CNN Course
week01.Ng's CNN Course
week02.Ng's CNN Course
Week06. Theory of Generalization
Week04. Feasibility of Learning
Week03. Types of Learning
Week02. Learning to Answer Yes/No
Week01. Course Introduction
DataMining
2
Data Mining Course Paper Reading
Data mining
Dimension_Reduction
1
Dimension Reduction
Experiments
1
Re-implement:SEE
Matrix
3
Matrix Differentiation
Matrix Inverse identities
Laplace Matrix and Rayleigh quotient.
Micheal_Nielson_Book(NNDL)
1
Chapter 3
ObjectDetection
3
EAST
YOLO9000: Better, Faster, Stronger
YOLO
PaperReading
11
Light-Head R-CNN
EAST
Visualizing and Understanding Convolutional Networks
Multi-Oriented Text Detection with Fully Convolutional Networks
YOLO9000: Better, Faster, Stronger
Gradient-Based Learning Applied to Document Recognition
YOLO
ResNet
FCN
SSD
SegLink
TextDetection
5
Light-Head R-CNN
Multi-Oriented Text Detection with Fully Convolutional Networks
FCN
SSD
SegLink
WeeklyLog
1
Scheme 2017
以下【标签】将用于标记这篇文稿:
下载客户端
关注开发者
报告问题,建议
联系我们
添加新批注
在作者公开此批注前,只有你和作者可见。
私有
公开
删除
查看更早的 5 条回复
回复批注
×
通知