@mShuaiZhao
2017-12-10T14:25:42.000000Z
字数 795
阅读 379
PaperReading
TextDetection
2017.12
[1] Fully Convolutional Networks for semantic Segmentation
Adapting classfier for dense prediction
Shift-and-stitch is filter rarefaction
最后的输出是downsampling的,如何做调整以实现semantic segmentation?
trick:按行填0,使得最后卷积的输出是输入的receptive field的中心点。
Unsampliing is backwards srided convolution
还有一种方法是插值。
In a sense, upsampling with factor is convolution with a fractional input stride of . So long as is integral, a natural way to upsample is therefore backwards convolution (sometimes called deconvolution) with an output stride of .
是transposed convolution
Patchwise training is loss sampling
Fom classifier to dense FCN
Combing what and where
Experimental framwork
所以说这篇论文的方法就是先通通过前向的卷积产生一些feature map,然后在此基础上用deconvolution的方法upsample,最后完成pixelwise的分类吗?