@mShuaiZhao
2017-11-30T11:18:50.000000Z
字数 1525
阅读 349
Course_Lin_MLF
2017.11
binary classification
实际中很多二分类问题,核心且基础
Multicalss Classification:Coin Recognition Problem
美国铜板分类,多种铜板
binary :
Regression:Patient Recovery Prediction Problem
or (bounded regression)
回归分析
应用:股价预测,天气预测等等
特点:输出是一个实数。
Structured Learning:Sequence Tagging Problem
自然语言处理中的词性标注,e.g. I(pronoun) love(verb) ML(noun).
sentence structure(class of each word)
,不包含
变成一个超大的多分类问题,structure hyperclass,类并没有明确的定义
Surpervised: Coin Recognition Revisited
训练样本有对应的标签
Unsupervised: Learning without
e.g. Coin Recognition without
无监督,没有标签
Semi-supervised
e.g. coin recognition with some label
半监督的学习
Reinforcement Learning
增强学习
e.g. 训练狗,对错误行为给予处罚,正确行为给予奖励
implicit by goodness( )
Batch Learning
一次给系统输入多个数据(一批,一个batch)进行训练
Online Learning
一个样本接一个样本依次学习更新
Active Learning:Learning by 'Asking'
Larning Philosophy
batch: 'duck feeding'
online: 'passive sequential'
active: 'question asking'
concrete feature
each dimension of epresents 'sophisticated physical meaning'
the easy 'ones' for ML
Raw Features: Digit Recoginition Problem
image pixels,speech signal
Abstract Features: Rating Prediction Problem
'no physicl meaning';thus even more difficult for ML
abstract: again nedd 'feature conversion/extraction/construction'
and more...