@spiritnotes
2016-02-26T03:59:19.000000Z
字数 1229
阅读 2415
sklearn
sklern中所有估计称为模型。
import numpy as npimport matplotlib.pyplot as plt# 'sepal width (cm)'x_index = 1# 'petal length (cm)'y_index = 2# this formatter will label the colorbar with the correct target namesformatter = plt.FuncFormatter(lambda i, *args: iris.target_names[int(i)])plt.scatter(iris.data[:, x_index], iris.data[:, y_index],c=iris.target, cmap=plt.cm.get_cmap('RdYlBu', 3))plt.colorbar(ticks=[0, 1, 2], format=formatter)plt.clim(-0.5, 2.5)plt.xlabel(iris.feature_names[x_index])plt.ylabel(iris.feature_names[y_index]);
from sklearn import neighbors, datasetsiris = datasets.load_iris()X, y = iris.data, iris.target# create the modelknn = neighbors.KNeighborsClassifier(n_neighbors=5, weights='uniform')# fit the modelknn.fit(X, y)# What kind of iris has 3cm x 5cm sepal and 4cm x 2cm petal?X_pred = [3, 5, 4, 2]result = knn.predict([X_pred, ])print(iris.target_names[result])print(iris.target_names)print(knn.predict_proba([X_pred, ]))from fig_code import plot_iris_knnplot_iris_knn()
