[关闭]
@wuqi0616 2017-07-19T14:02:55.000000Z 字数 9356 阅读 896

SOASMC-MDCS-PMSM

(second-order adaptive sliding mode control)
(Mean deviation coupling synchronous)
(Permanent magnet synchronous motor)
三轴运动平台


一个典型的多轴电机同步控制方案包括:

1 现有方法和论文方法的区别之处

1.1 同步控制策略

其它学者方法:

论文方法(MDCS-均值偏差耦合同步):
文中认为,尽管之前的学者提出了多种同步控制的方法,并且已经能够得到较好的同步控制效果,也解决了交叉耦合器在多轴系统上复杂度高的问题,但是像是交叉耦合同步控制器及其改进都只是利用到了相邻电机的速度作为反馈补偿。这些方法没有考虑到可能因为变速延迟造成所有电机响应不同的问题。

1.2 控制算法

其它学者方法:

文中引用的方法:
文中对SMC-滑膜控制的性能与实际过程中可能出现的问题评论之后,引用了改进的SMC方法(SOSMC-二阶滑膜控制器)[25][26][27][28][29][30]
二阶滑膜控制器方法的优点:

二阶滑膜控制器的方法存在的问题:
包含机械参数变化和外部扰动的不确定性上界的选择对控制性能有着重要的影响。但是,在实际应用中,不确定性的上界很难预先知道,实际应用滑模控制律是很困难的。因此在设计SOSMC的时候,需要先假设已知不确定上界值。
文中提到采用了一种自适应的方法来估计这未知上界值。

2 平均偏差耦合控制策略

此处输入图片的描述
:给定机械角速度
:各轴电机机械角速度
:所有轴电机平均机械角速度
:平均角速度误差,
:角速度跟踪误差

核心思想:将各轴电机的实时角速度与系统平均角速度的差值作为该轴的反馈补偿信号。
此处输入图片的描述
速度控制器的目标在于:

从上图所示,每轴的速度控制器内部包含两个子控制器,当系统含有n个轴时,只需要设计个控制器,大大减少了系统复杂度:

值得注意的是:
文中仍然采用传统的同步误差定义:

3 滑膜控制器设计

3.1 一阶滑膜控制器

3.1.1速度跟踪控制器

经过一些设定之后有:


因此:

定义传统滑膜面为:

这里c是一个给定的正常数,如果找到一个合适的控制率能够使得那么可以得到:

其中,参数c决定了跟踪误差的收敛速率,
根据以上式子得:

这里

速度轨迹SMC控制率为:


其中

根据SMC控制率代入上式得:

3.1.1平均速度偏差控制器

假设:已知满足


其中
滑模时变表面在可以定义为:

同理:

平均速度偏差控制率为:

其中

根据SMC控制率代入上式得:



[1] Tomizuka M, Kamano T, Hu J-S, Chiu T-C. Synchronization of two motion control axes under adaptive feedforward control. ASME J Dyn Syst, Meas, Control 1992;114:196–203.
[2] Bin Z, Feng G, Tian L. Normalized coupling method for speed synchronization of multi-axis driving vehicles. Int J Adv Robot Syst 2012:9
[3] Anderson RG, Meyer AJ, Valenzuela MA, Lorenz RD. Web machine coordinated motion control via electronic line-shafting. IEEE Trans Ind Appl 2001;37:247–54.
[4] Valenzuela MA, Lorenz RD. Electronic line-shafting control for paper machine drives. IEEE Trans Ind Appl 2001;37:158–64.Valenzuela MA, Lorenz RD. Electronic line-shafting control for paper machine drives. IEEE Trans Ind Appl 2001;37:158–64.
[5] Chen CS, Chen LY. Robust cross-coupling synchronous control by shaping position commands in multiaxes system. IEEE Trans Ind Electron 2012;59:4761–73.
[6] Sun D, Shao X, Feng G. A model-free cross-coupled control for position synchronization of multi-axis motions: theory and experiments. IEEE Trans Control Syste Technol 2007;15:306–14.
[7] Koren Y. Cross-coupled biaxial computer control for manufacturing systems. JDyn Syste Meas Control-Trans ASME 1980;102:265–72
[8] Sun D, Mills JK. Adaptive synchronized control for coordination of multirobot assembly tasks. IEEE Trans Robot Autom 2002;18:498–510
[9] Cheng MH, Li YJ, Bakhoum EG. Controller synthesis of tracking and synchronization for multiaxis motion system. IEEE Trans Control Syst Technol 2014;22:378–86
[10] Cao LZ, Li CW, Niu C, Zhao DZ, Wei SB. Synchronized sliding-mode control for multi-induction motors based on adjacent cross-coupling. Dianji yu Kongzhi Xuebao/Electric Mach Control 2008;12:586–92
[11] Zhao DZ, Li CW, Ren J. Speed synchronisation of multiple induction motors with adjacent cross-coupling control. IET Control Theory A 2010;4:119–28
[12] Liu R, Sun JZ, Luo YQ, Sun W, Li WD. Research on multi-motor synchronization control based on the ring coupling strategy for cutterhead driving system of shield machines. Adv Mech Eng 2011;52–54:65–72.
[13] Ouyang PR, Dam T, Pano V. Cross-coupled PID control in position domain for contour tracking. Robotica 2015;33:1351–74.
[14] Tomizuka M, Kamano T, Hu J-S, Chiu T-C. Synchronization of two motion control axes under adaptive feedforward control. ASME J Dyn Syst, Meas,Control 1992;114:196–203
[15] Zhao DY, Li SY, Gao F. Fully adaptive feedforward feedback synchronized tracking control for Stewart Platform systems. Int J Control Autom 2008;6:689–701
[16] Chen CS, Chen LY. Robust cross-coupling synchronous control by shaping position commands in multiaxes system. IEEE Trans Ind Electron 2012;59:4761–73.
[17] Barton KL, Alleyne AG. A cross-coupled iterative learning control design for precision motion control. IEEE Trans Control Syste Technol 2008;16:1218–31
[18] Chen W, Wu YF, Du RH, Chen QW, Wu XB. Speed tracking and synchronization of a dual-motor system via second order sliding mode control. Math Probl Eng 2013
[19] Zhan LX, Zhou K. Adaptive fuzzy sliding mode control for a robotic aircraft flexible tooling system. Int J Adv Manuf Technol 2013;69:1469–81
[20] Lin FJ, Chou PH, Chen CS, Lin YS. DSP-based cross-coupled synchronous control for dual linear motors via intelligent complementary sliding mode control. IEEE Trans Ind Electron 2012;59:1061–73.
[21] Zhao D, Li S, Gao F, Zhu Q. Robust adaptive terminal sliding mode-based synchronised position control for multiple motion axes systems. IET Control Theory A 2009;3:136–50
[22] Zhao DY, Zhu QM. Position synchronised control of multiple robotic manipulators based on integral sliding mode. Int J Syst Sci 2014;45:556–70.
[23] Shao J, Tan P, Xu Y, Jin XJ, Malekian R. An improved synchronous control strategy based on fuzzy controller for PMSM. Elektron Elektrotech 2014;20:17–23
[24] Lin FJ, Hsieh HJ, Chou PH, Lin YS. Digital signal processor-based cross-coupled synchronous control of dual linear motors via functional link radial basis function network. IET Control Theory A 2011;5:552–64
[25] Loukianov AG, Canedo JM, Fridman LM, Soto-Cota A. High-order block slidingmode controller for a synchronous generator with an exciter system. IEEE Trans Ind Electron 2011;58:337–47.
[26] Lin FJ, Hung YC, Ruan KC. An intelligent second-order sliding-mode control for an electric power steering system using a wavelet fuzzy neural network. IEEE Trans Fuzzy Syst 2014;22:1598–611.
[27] Manceur M, Essounbouli N, Hamzaoui A. Second-order sliding fuzzy interval type-2 control for an uncertain system with real application. IEEE Trans Fuzzy Syst 2012;20:262–75
[28] Girin A, Plestan F, Brun X, Glumineau A. High-order sliding-mode controllers of an electropneumatic actuator: application to an aeronautic benchmark. IEEE Trans Control Syst Technol 2009;17:633–45
[29] Amodeo M, Ferrara A, Terzaghi R, Vecchio C. Wheel slip control via secondorder sliding-mode generation. IEEE Trans Intell Transp 2010;11:122–31.
[30] Na J, Ren XM, Zheng DD. Adaptive control for nonlinear pure-feedback systems with high-order sliding mode observer. IEEE Trans Neur Net Learn 2013;24:370–82
添加新批注
在作者公开此批注前,只有你和作者可见。
回复批注